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Abstract

The high cost of acquiring seismic data in Marine
environments compels the adoption of simultaneous-
source acquisition - an emerging technology that is
stimulating both geophysical research and commercial
efforts. In this paper, we discuss the properties
of randomized simultaneous acquisition matrices
and demonstrate that sparsity-promoting recovery
improves the quality of the reconstructed seismic data
volumes. Simultaneous Marine acquisition calls for
the development of a new set of design principles
and post-processing tools. Leveraging established
findings from the field of compressed sensing, the
recovery from simultaneous sources depends on a
sparsifying transform that compresses seismic data, is
fast, and reasonably incoherent with the compressive
sampling matrix. To achieve this incoherence, we use
random time dithering where sequential acquisition
with a single airgun is replaced by continuous
acquisition with multiple airguns firing at random
times and at random locations. We demonstrate
our results with simulations of simultaneous Marine
acquisition using periodic and randomized time
dithering.

Introduction

Data acquisition in seismic exploration forms one of the
bottlenecks in seismic imaging and inversion. It involves
the collection and processing of massive data volumes,
which can be up to 5-dimensional. Constrained by the
Nyquist sampling rate, the increasing sizes of these data
volumes pose a fundamental shortcoming in the traditional
sampling paradigm as the size and desired resolution of
the survey areas continue to grow.

Recently, “compressed sensing” (Donoho, 2006; Candés et
al., 2006) has emerged as an alternate sampling paradigm
in which randomized sub-Nyquist sampling is used to
capture the structure of the data with the assumption that
it is sparse or compressible in some transform domain.
In seismic imaging, the data consists of wavefronts
that exhibit structure across all 5 dimensions. In this
paper, we rely on this dimensionality reduction feature
of compressed sensing to develop a new simultaneous
Marine acquisition technology where acquisition related

costs are no longer determined by the stringent Nyquist
sampling criteria. Our new sampling scheme replaces
the high dimensional sequential shot record with a single
long “supershot” in which a subset of randomly selected
impulsive shots are superposed with random shifts in time.
We then recovery the sequential shot record by solving a
sparsity promoting inverse problem. We focus on finding
appropriate measurement or sampling matrices which are
incoherent with the sparsifying transform and demonstrate
the effectiveness of these matrices in recovering seismic
lines. Moreover, the proposed sampling scheme is
physically realizable.

Compressed sensing overview

Compressive sensing (abbreviated as CS throughout the
paper) is a process of reconstructing a signal utilizing
the prior knowledge that it is sparse or compressible
in some transform domain. The core idea of CS is a
novel sampling technique, which under certain conditions
can lead to smaller sampling rate compared to the
conventional Nyquist sampling rate. CS is based on
three key elements: randomized subsampling, sparsifying
transforms and sparsity-promotion recovery by convex
optimization.

One of the main advantages of CS is that it combines
transformation and encoding in a single linear step,
resulting in a direct application of this technology in seismic
acquisition where the acquisition costs are quantified by the
transform-domain sparsity of seismic data instead of the
grid size. This scheme aims to design acquisition surveys
in a way that renders the randomized subsampling related
artifacts, caused by periodic missing traces or by crosstalk
between simultaneous sources, harmless by turning them
into incoherent Gaussian noise that can be easily removed
during processing.

Suppose that the high resolution data is represented
by the N-dimensional vector f0 ∈ Rm which admits a
sparse representation x0 ∈ RN in some transform domain
characterized by the operator S ∈ Rm×N with N ≥ m. Note
here that the signal f0 and its sparse representation x0 =
S f0 can be of different dimensions as in the case of the
redundant Curvelet transform (Candés et al., 2006a).

The sparse recovery problem involves solving an
underdetermined system of equations

b = Ax0, (1)

where b∈Rn, n < N represents the compressively sampled
data of n measurements, and A ∈ Rn×N represents the
sampling matrix. Note that A can be written as the
product of a restriction/mixing operator RM ∈Rn×m and the
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sparsifying operator S such that A = RMSH and

Ax0 = RM f0.

Sparsity-promoting recovery can then be achieved by
solving the basis pursuit (BP) convex optimization problem
shown below

x̃ = arg min
x∈RN
‖x‖1 subject to b = Ax, (2)

where x̃ represents the sparse approximation of x0, and the
`1 norm ‖x‖1 is the sum of absolute values of the elements
of a vector x. The BP problem finds a sparse or (under
some conditions) the sparsest solution that explains the
data exactly.

By solving a sparsity-promoting problem (Candés et al.,
2006; Donoho, 2006; Herrmann et al., 2007; Mallat,
2009), we reconstruct high-resolution data volumes from
the randomized samples at the moderate cost of a
minor oversampling factor compared to data volumes
obtained after conventional compression (see e.g. Donoho
et al., 1999, for wavelet-based compression). With
sufficient sampling, this nonlinear recovery outputs a set
of largest transform-domain coefficients that produces a
reconstruction with a recovery error comparable with the
error incurred during conventional compression. As in
conventional compression this error is controllable, but in
the case of CS this recovery error depends on the sampling
ratio, i.e., the ratio between the number of samples taken
and the number of samples of the high-resolution data.
From a seismic perspective, this is the ratio between the
size of the randomly mixed “supershot” and the size of
the sequential shot record. Consequently, the survey
time is reduced since shots are fired simultaneously and
continuously and hence the costs of acquisition, storage,
and possibly of data-driven processing are also reduced.

Next, we discuss the conditions that make unique recovery
possible despite the fact that the linear system we are
solving is under-determined, meaning that we have fewer
equations than unknowns. Suppose that the vector x0 is
k-sparse, i.e., there are k� N nonzero entries in x0. It is
possible to recovery x0 exactly as long as any subset of
k columns of the n×N matrix A is nearly orthogonal. By
nearly orthogonal we mean that there exists a restricted
isometry constant 0 < δk < 1 for which

(1−δk)‖xk‖2
2 ≤ ‖AΛxk‖2

2 ≤ (1+δk)‖xk‖2
2, (3)

where Λ is any subset of {1 . . .N} with cardinality |Λ| ≤ k,
AΛ is the submatrix of A whose columns are indexed by Λ,
and xk is a k-dimensional vector.

Another measure of the orthogonality of the columns of A
is the mutual coherence µ(A) between the columns of A.
The mutual coherence, which provides an upper bound on
δk ≤ (k−1)µ(A), is given by

µ(A) = max
1≤i6= j≤N

|aH
i a j|/(‖ai‖2 · ‖a j‖2), (4)

where ai is the ith column of A and the superscript
H denotes the Hermitian transpose. Therefore, the
mutual coherence is the largest absolute normalized inner
product between different columns of A (Bruckstein et al.,
2009). For successful (CS) recovery, the mutual coherence
between the columns of the measurement matrix A should
be small. When the mutual coherence is small, this means
that the columns are closer to being orthogonal.

Compressed sensing and simultaneous Marine
acquisition

Compressive sensing provides powerful tools for acquiring
signals that have a sparse representation in some
transform domain via sampling strategies/rates that are
small compared to the conventional Nyquist sampling rate.
Our focus here is specifically on the design of source
subsampling schemes that favor recovery and on the
selection of the appropriate sparsifying transform.

Seismic data permits sparse representation with multiscale
and multidirection transforms that capture the “wavefront
set” of the subsurface reflectors. By construction,
curvelets are well adapted to data with wavefront-like
features, hence, are well suited for representing seismic
data parsimoniuosly as the elements of this tranform
behave approximately as high-frequency asymptotic
eigenfunctions of wave equations (see e.g. Smith, 1998;
Candés and Demanet, 2005; Candés et al., 2006a;
Herrmann et al., 2008). Therefore, we use curvelet
transform as the sparsifying transform in our study.

During seismic data acquisition, the collected data volumes
represent discretizations of analog finite-energy wavefields
in two or more dimensions including time. We recover
a sparse approximation f̃ of the discretized wavefield f
from measurements b = RM f by inverting the compressive
sampling matrix

A := RMSH (5)

with the sparsity-promoting program

f̃ = SH x̃ with x̃ = argmin
x
‖x‖1 subject to Ax = b. (6)

To perform this inversion, we use the SPGL1 solver (Berg
and Friedlander, 2008).

Random time dithering

The design of the sampling operator RM is critical
to the success of the recovery algorithm. In the
simultaneous Marine acquisition scenario, the classic
sequential acquisition with a single airgun is replaced
with continuous acquisition with multiple airguns firing at
random times and at random locations.

Suppose that we have ms shots mr receivers and every
shot decays after mt time samples. We first map the
seismic line into a series of sequential shots f of total
length m = msmtmr and apply the sampling operator RM
to reduce f to a single long “supershot” of length n that
consists of a superposition of ns � ms impulsive shots.
To make the analysis feasible, we ignore for now any
varying detector coverage with each source and assume
the receiver spread to be constant throughout the entire
survey. The resulting sampling operator is defined as
follows

RM := [I⊗T ], (7)

where ⊗ is the Kronecker product operator, I is an mr ×
mr identity matrix, and T is a random shot selector and
time shifting linear operator. Applying the operator T
turns the sequential source recordings into continuous
recordings with ns impulsive sources selected uniformly at
random from {1 . . .ms} source indices, and firing at random
times selected uniformly at from (1 . . .(ns − 1)×mt) time
units. Consequently, the operator T subsamples the msmt
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samples to be recorded at each receiver to nst � nsmt
samples. Figure 1 illustrates an example of a sampling
operator T used in our simultaneous acquisition scheme.
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Figure 1: Example of the sampling operator T used in our
proposed randomized time dithering acquisition scheme.

Next, we show that by randomizing the time dithering, i.e.,
when the time lag between individual shots is random, the
measurement matrix A exhibits a smaller mutual coherence
than constant time dithering. To illustrate this feature, we
plot the Gramm matrix G = AHA of each of the random lag
and constant lag operators in Figure 2. The Gramm matrix
conveys information on the orthogonality of the columns
of A. The faster the off-diagonal elements in G decay, the
more orthogonal the columns of A, and consequently, the
lower is the mutual coherence.
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Figure 2: Gramm matrices of randomized and constant
time dithering operators, top and bottom left, respectively.
The top and bottom right plots show the center columns of
the adjacent Gramm matrices.

Experimental results

We illustrate the effectiveness of our simultaneous source
acquisition approach by studying its performance on a
seismic line from the Gulf of Suez shown in Figure 3.

Figure 3: Fully sampled sequential data from conventional
sequential acquisition with 128 shots, 128 receivers and
512 time samples.

We simulate ‘Marine’ acquisition by randomly selecting
128 shots from the total survey time t = δ × (ns − 1)× t0
with a subsampling ratio δ = 0.5. Figure 4 represents a
subset of the ‘supershot’ obtained by applying the sampling
operator RM to the data. Notice that this type of ‘Marine’
acquisition is physically realizable as long as the number
of simultaneous sources involved is limited.

Figure 4: Compressively sampled ‘Marine’ data (δ = 0.5).

Using the 3-D curvelet transform, which attains higher
sparsity because it explores continuity of the wavefield
along all three coordinate axes, the recovery results for
‘Marine’ acquisition is shown in Figure 5. The recovered
image has an SNR of 11.1dB. We observe that accurate
recovery is possible by solving an `1 minimization problem
with only 200 iterations of SPGL1 (Berg and Friedlander,
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2008).

Figure 5: Recovery of ‘Marine’ data (SNR = 11.1dB).

Summary and Conclusions

In summary, following ideas from CS, seismic wavefields
can be reconstructed from randomized subsamplings.
Acquisition and processing costs are no longer determined
by the resolution and size of the acquisition survey,
rather, they scale with transform - domain sparsity of the
wavefield, and a new paradigm for randomized processing
and inversion. Recovery from simultaneous simulations
depends on transform-domain sparsity wherein sparser
signals, i.e., signals with a small number of significant
transform domain coefficients permit better recovery. This
new sampling paradigm can be successfully exploited in
various problems in exploration seismology to effectively
repulse the “curse of dimensionality”, i.e., the exponential
increase in volume on addition of extra dimensions to the
data collection. Although our analysis is carried out under
the assumption of fixed receiver spread, we hope to extend
this framework to geometries that vary receiver spread with
time, such as towed streamer surveys.
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