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Debora Mondini, Unicamp, Jessé C. Costa, UFPa and INCT-GP, Jörg Schleicher, Unicamp and INCT-GP, Amélia Novais,
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Abstract

Three-dimensional wave-equation migration
techniques are still quite expensive because of
the huge matrices that need to be inverted. Several
techniques have been proposed to reduce this cost
by splitting the full 3D problem into a sequence
of 2D problems. We compare the performance of
splitting techniques for 3D Finite-Difference (FD)
migration techniques in terms of image quality and
computational cost. The FD method is complex Pad é
FD, and the compared splitting techniques are two and
alternating four-way splitting, i.e., splitting into the
coordinate directions at one depth and the diagonal
directions at the next depth level. From numerical
examples in inhomogeneous media, we conclude that
alternate four-way splitting yields better results than
the two-way splitting, with the same cost.

Introduction

In three dimensions, migration methods based on solving
the one-way wave equation, besides facing problems to
image dip reflectors and handle evanescent waves, are still
computationally expensive. For the problems of imaging
dip reflectors and evanescent waves, we use the complex
Padé approximation. Because the resolution of three-
dimensional problem is computationally expensive, over
the years various techniques have been developed in
order to reduce costs and still maintain the quality of the
migration method that you are using. A commonly used
technique is splitting.

For the case of splitting in two directions, we face
the problem of numerical anisotropy, i.e., the migration
operator acts differently in different directions, resulting
in positioning errors of reflectors in the situation where
the direction of the dip reflector is far from the directions
of migration plans. To correct this problem we use
the correction of Li (1991). Without changing the basic
principle of applying subsequent 2D FD migrations in the
x and y directions, the Li correction is an extrapolation
of the residual field by a phase shift. When splitting
is applied alternately in four directions (the horizontal
coordinates and the diagonals), we may still face problems
of numerical anisotropy and, consequently, of positioning
errors of steeply dipping reflectors. Therefore, we also
tested the application of a Li correction in this case.

Our goal in this work is to evaluate the behavior of
3D FD migration operators using the complex Padé
approximation, the technique of splitting into two or four
alternating directions, as well as the Li correction. For that
purpose, we compare the results obtained by FD migration
of synthetic data from the SEG/EAGE salt model.

Theory

According to the hypothetical model of the exploding
reflector, a migration consists only in repositioning the
seismic wave recorded at the source position to depth at
time t = 0. Thus, we see that we need only the waves that
propagate upward to perform a migration. The acoustic
wave equation for a homogeneous medium is given by
(Leontovitch et al., 1964)

∇2 p(x, t) =
∂ 2 p(x, t)

∂x2 +
∂ 2 p(x, t)

∂y2 +
∂ 2 p(x, t)

∂ z2 =
1
v2

∂ 2 p(x, t)
∂ t2 ,

(1)
where ∇ is the Laplacian operator, p(x, t) is the scalar
wave field, x = (x,y,z) and v is the speed of the medium,
considered constant. We define the Fourier transform in
horizontal coordinates x and y and time t as

P(kx,ky,z,ω) =
∫ ∞

−∞
p(x, t)ei(kxx+kyy−ωt)dtdxdy, (2)

and its inverse in the same variables as

p(x, t) =
1

(2π)3

∫ ∞

−∞
P(kx,ky,z,ω)e−i(kxx+kyy−ωt)dωdkxdky.

(3)

Applying the Fourier transform as in (2) in equation (1) and
factoring the resulting equation, we can write the one-way
wave equation for upgoing waves as

[

∂
∂ z

−
(−iω)

v

√

1−
v2

ω2 (k
2
x + k2

y)

]

P(kx,ky,z,ω) = 0. (4)

Considering that the velocity is locally constant, i.e., the
propagation of waves at each location x is well described
by a constant speed, but the value of this constant velocity
depends on x, we rewrite the above equation as

∂P(x,ω)

∂ z
=

(−iω)

v(x)

√

1+
v(x)2

ω2

(

∂ 2

∂x2 +
∂ 2

∂y2

)

P(x,ω), (5)

which is the upgoing one-way wave equation for media with
moderate velocity varations.

Complex Pad é approximation

To actually use equation (5) in migration, we need to
approximate the square-root operator by some numerically
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executable expression. Using a Taylor approximation may
present some difficulties inherent in such series. Often the
convergence of the series is extremely slow, or else, its
radius of convergence does not include areas of particular
interest to the problem being studied. On the other hand,
Padé series enable us to start from a power series and
obtain much more information than the series itself can
provide us directly (Navarro et al., 1999).

Padé approximants are rational functions, i.e., quotients of
two polynomials, which represent an expansion. These
approximants are characterized by two positive integers
L and M degrees of the numerator and denominator,
respectively, rational function, and are represented by the
notation [L/M]. Explicitly, an Padé approximant is defined
by

[L/M] =
PL(x)
QM(x)

, L,M ≥ 0. (6)

Using the method of Padé approximants in equation (5), we
can rewrite the square root operator as

√
1+Z ≈ 1+

N

∑
n=1

anZ
1+bnZ

, (7)

where the coeficientes an and bn are real Padé coeficients
(Bamberger et al., 1988) given by

an =
2

2N +1

(

sen2 nπ
2N +1

)

and bn = cos2
(

nπ
2N +1

)

.

(8)

The Padé approximation is widely used because it allows
an efficient numerical implementation and a larger error
order than other approximation methods. However, when
looking for images with good accuracy for wide angles
of propagation, equation (7) becomes inappropriate. The
reason is that for angles near 90◦, the argument Z becomes
very close to −1. And when Z < −1, the left side of the
equation (7) is complex while the right side is still real,
causing an inconsistency in the approximation (Amazonas
et al., 2007). Physically, this means that the representation
of equation (7) cannot properly handle evanescent waves.
This feature is responsible for the unstable behavior of
the algorithm in the presence of strong lateral velocity
variations.

In the complex plane, a Padé expansion with real
coefficients corresponds to approximations of the square
root with branch cut along the negative real axis. To
overcome the problems with evanescent waves, Millinazzo
et al. (1997) proposed the introduction of a rotation
angle α , which rotates the branch cut, improving the
representation of the evanescent part of spectrum, and
therefore the stability of the approach.

Considering the rotation of the branch cut on the complex
plane, the representation of the square root has the form

√
1+Z ≈C0 +

N

∑
n=1

AnZ
1+BnZ

, (9)

where the complex Padé coeficientes are given by

An =
ane−iα/2

[1+bn(e−iα −1)]2
, Bn =

bne−iα

1+bn(e−iα −1)
, (10)

C0 = eiα/2

[

1+
N

∑
n=1

an(e−iα −1)
[1+bn(e−iα −1)]

]

≈ 1. (11)

The constant C0 is the closer to one the more terms N are
used in the approximation. Since it does not depend on the
argument Z, it can be immediately replaced by one in the
algorithm.

FD migration with the complex Pad é approximation

This method approximates the operator of the one-way
wave equation (5) by a Padé series (Bamberger et
al., 1988; Claerbout, 1985). Its complex version is
obtained replacing the real coefficients an and bn by the
corresponding complex coefficients An and Bn, resulting in

∂P(x,ω)

∂ z
=

(−iω)

v(x)



1+
N

∑
n=1

An
v2(x)
ω2

(

∂ 2

∂x2 +
∂ 2

∂y2

)

1+Bn
v2(x)
ω2

(

∂ 2

∂x2 +
∂ 2

∂y2

)



 P(x,ω).

(12)

Like its real version, this operator can be implemented
in cascade, considering each term of the summation
independently. Thus, we first need to solve the differential
equation

∂P(x,ω)

∂ z
=

(−iω)

v(x)
P(x,ω), (13)

followed by equations resulting from the terms inside the
summation, i.e.,

∂P(x,ω)

∂ z
=

(−iω)

v(x)





An
v2(x)
ω2

(

∂ 2

∂x2 +
∂ 2

∂y2

)

1+Bn
v2(x)
ω2

(

∂ 2

∂x2 +
∂ 2

∂y2

)



 P(x,ω), (14)

for n = 1, . . . ,N.

To solve this system of equations, we consider each
solution of the previous equation the initial condition for
the following equation. The first equation (13) has an
analytic solution for models for which the velocity satisfies
v(x) = v(x,y) within a layer of size ∆z. Then, we can express
the wavefield at level z+∆z depending on the wavefield at
the previous level, z, as

P(x,y,z+∆z,ω) = P(x,y,z,ω)exp

[

(−iω)

v(x)
∆z

]

. (15)

The differential equations associated with the summation
are given by

∂P(x,ω)

∂ z
+Bn

v2(x)
ω2

(

∂ 2

∂x2 +
∂ 2

∂y2

)

∂P(x,ω)

∂ z
= (16)

−An
v(x)
(−iω)

(

∂ 2

∂x2 +
∂ 2

∂y2

)

P(x,ω) .

The advantages of using the complex version is that this
technique does not have limitations towards the velocity
model variations. It can handle evanescent waves more
appropriately. The downside remains the same as in the
real version of the FD method, which is the difficulty of
imaging steep-dip reflectors.

Splitting

The numerical solution of the differential equation (17)
involves the inversion of a huge matrix, which is a very
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costly process. Individual solution in the coordinate
directions [suppressing the x or y derivatives in equation
(17)] are orders of magnitude less expensive. So, the
idea arose to approximately execute the full 3D operator
of equation (17) as a sequence of 2D processes (Brown,
1983). This approach is called splitting.

Generalizing this idea, Ristow et al. (1997) proposed
splitting in various directions, which consists in
approximating a 3D operator in a sequence of 2D
operators, usually along the lines of horizontal coordinates,
the inline and crossline directions and some additional
directions away from the coordinate axis. The price to
pay for the increased efficiency of the method is reduced
accuracy in the directions not used for the 2D operators.

Correction for two way splitting (Li correction)

To compensate the errors caused by the use of splitting
into the coordinate directions (below referred to as two-way
splitting) and still preserve the efficiency of the FD method,
Li (1991) proposed the application of a phase correction
operator, implemented either as a phase-shift term or using
the PSPI method. This difference operator is obtained
by evaluating the error between the true and approximate
operators.

The idea of this correction is to carry out the conventional
2D FD migration in both directions where the splitting was
done plus a residual wavefield extrapolation by the phase-
shift method (when the lateral velocity variation is small), or
the PSPI method (when the lateral variations of the wave
speed are more significant).

Because the error is supposedly small in each step of
the extrapolation, the effect of the compensation process
is similar to the residual migration, in which case the
waves propagate very little at each step. Therefore, it is
reasonable to replace the true velocity v(x) by a reference
velocity vr and apply the correction only at a reduced
number of depth steps.

For the choice of these reference velocities, several
methods exist. In this work, we employ a modified version
of the method of Lloyd (1982). The main idea behind this
method is to iteratively improve the values of a chosen
set of reference velocities by looking at statistical values
in each region (mean, median and variance), and then
change the region boundaries in each iteration as an
attempt to find the best solution based on some criterion. In
our modified version, reference velocities too close to each
other are eliminated and values too far from each other are
split at the end of the process.

Results

We tested these implementations of FD migration for the
case of zero offset by their impulse responses in the
EAGE/SEG model salt. We used the following modeling
parameters: The source wavelet is a Ricker pulse with
central frequency of 15 Hz; the migration grid spacing is
∆x=∆y=∆z= 20 m (to avoid numerical dispersion, we treat
the model as if the spacing was 10 m); the delta pulse to
be migrated is symmetrically positioned with its center at
t = 1.1 s.

To represent the results, we use vertical cuts parallel to the
yz and xz planes at x = y = 8.32 km, and horizontal cuts at

z = 1.1 km and z = 2.7 km depths. In order to use Lloyd’s
method for choosing the reference velocities for each level,
we calculate the average slowness using all points (x,y) of
the velocity model. Because it is an iterative method, the
number of reference velocities is variable, limited to at most
10 velocities at each level.

Unless otherwise specified, we use in our numerical tests
the following parameters: three terms (N = 3) in the
complex Padé approximation, rotation angle α = 45◦, and
application of the Li correction at every 6 steps. We
compare the results varying these parameters individually.
As a reference, we use the result of the FFDPI method
(Biondi, 2002) to evaluate our results (see Figure 1).
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Figure 1: Impulse response obtained by FFDPI migration.
4 cuts represented as x = 8.32 km (top left), y = 8.32 km
(top right), z = 1.1 km (bottom left) and z = 2.7 km (bottom
right).

Despite the numerical dispersion visible in these figures,
they show no signs of numerical anisotropy, so that the
positioning of the events can be considered reliable.

In Figure 2 we see the result of complex Padé FD migration
with three terms and without Li correction. In the horizontal
sections, we see a deviation from circular to diamond
shape and the appearance of artifacts, indicating the strong
numerical anisotropy caused by splitting. We also note
the the wavefront lag behind their true position (compare
to Figure 1).

Next, we investigate the dependence on the number of
terms in real and complex FD migration. As a general
observation, we find that the optimum rotation angle
depends on the number of terms used. Below, we show
only the results with the best rotation angle.

Figures 3 and 4 show the results of real and complex
Padé FD migration, both with 1 term, and Li correction.
Comparing Figures 3 and 4 we note the appearance of
artifacts in the real version in vertical cuts, and blurred
events in the complex version. The artifacts present in the
shallowest horizontal cut are a consequence of applying
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Figure 2: Impulse response obtained by FD migration
without Li correction and complex Padé approximation.
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Figure 3: Impulse response obtained by FD migration using
real Padé approximation with 1 term and Li correction.

the Li correction. However, there are less artifacts in the
complex version than in the real one. The comparison with
the results in Figure 2 shows that Li correction actually
improves the positioning of the events. Delays in the
diagonal directions were fixed, recovering an almost perfect
circular shape.

Figures 5 and 6 show the corresponding results with 2
terms and Li correction. Comparing Figures 5 and 6 with
Figures 3 and 4 we note that with 2 terms we have less
artifacts in the real version, and more marked events in the
complex version in the vertical cuts.

In Figures 7 and 8 we see the corresponding results
obtained with 3 term. Comparing Figures 3 and 4 we note
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Figure 4: Impulse response obtained by FD migration
using complex Padé approximation with 1 term with rotation
angle of 15◦ and Li correction.
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Figure 5: Impulse response obtained by FD migration using
real Padé approximation with 2 terms and Li correction.

that we have less artifacts than when we use 1 term in the
approximation. The 3-term real result attains approximately
the same quality as the 2-term complex result.

Figure 9 depicts the results when using the mean velocity
instead of the mean slowness for the reference velocity
computation. As expected, the result is of inferior quality to
that obtained with the mean slowness (Figure 8), because
the latter corresponds to the real representation we can see
in the wave equation.

In addition two the above experiments with two-way
splitting, we also tested alternating four-way splitting,
where the splitting is carried out in the coordinate directions
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Figure 6: Impulse response obtained by FD migration using
complex Padé approximation with 2 terms with rotation
angle of 25◦ and Li correction.
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Figure 7: Impulse response obtained by FD migration using
real Padé approximation with 3 terms and Li correction.

at one level and in the diagonal directions at the next level.
Apart from minor effects, alternating four-way splitting
has the same computational cost as two-way splitting.
Figure 10 shows the results. We see that the problem
of numerical anisotropy has improved, but not completely
solved. Although we do not see artifacts in the horizontal
cuts, we see a deviation from circular to octogonal
shape. Other remaining positioning errors are evident
when comparing Figure 10 with the corresponding Figure 1
obtained by FFDPI method. To fix the remaining anisotropy
we also applied the Li correction (see Figure 11).
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Figure 8: Impulse response obtained by FD migration using
complex Padé approximation with 3 terms with rotation
angle of 45◦ and Li correction.
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Figure 9: Impulse response obtained by FD migration using
complex Padé approximation with 3 terms with rotation
angle of 45◦, mean velocity and Li correction.

Conclusions

From the numerical tests, we conclude that FD migration
with two-way splitting plus Li correction showed an
excellent recovery of circular shape, but still showed some
remaining phase errors. As a drawback, it must be noted
that as a consequence of the Li correction, some migration
artifacts emerged or were reinforced.

When comparing the real and complex versions of the
Padé approximation, we found few differences. Using
fewer terms in the Padé expansion stronger affected the
real version than its complex counterpart. With respect to
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Figure 10: Impulse response obtained by FD migration
using alternating four-way splitting and without Li
correction.
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Figure 11: Impulse response obtained by FD migration
using alternating four-way splitting and with Li correction.

the rotation angle of the branch cut in the complex Padé
approximation, we found that the fewer number of terms
are used the smaller the rotation angle must be.

The application of splitting in more than two directions is
useful to reduce the numerical anisotropy, but is costly.
Moreover, in the diagonal directions aliasing effects may
arise because the distances of the grid points are a factor√

2 higher. Other directions outside of the axes and
diagonals complicate the problem because they demand
resampling. One way to reduce the cost of splitting into four
directions is the application in alternating directions, the
coordinate directions at one depth step and the diagonals
at the next. This alternating application has the same

cost of splitting in two directions but has a very high
quality. In our experiments, the quality was equivalent
to full 4-way splitting. Thus, the numerical results in
four directions presented in this paper exclusively use this
alternate implementation. For not too deep reflectors, the
remaining numerical anisotropy is acceptable. However,
for larger migration distances, regardless of the splitting
into two-way or alternating four-way directions Li correction
should not be forgotten if accurated positioning is desired.
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