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Abstract 

An integrated workflow, including careful seismic data 
preconditioning, simultaneous elastic inversion and 
seismic lithology classification has been applied to 
predict the distribution of five lithofacies in a complex 
turbiditic reservoir offshore Brazil. Four partial angle 
stacks (2°-40°) with 6 key wells, have been used to 
derive elastic properties through inversion. A well-
based feasibility study shows that reservoir facies can 
be identified from a Vp/Vs ratio versus P-wave 
impedance (Ip) cross-plot. The main challenge for this 
seismic lithology discrimination was the complexity of 
the depositional system, which was tackled by 
incorporating a 3-D facies trend model in the seismic 
lithology prediction workflow. By applying a supervised 
Bayesian classification technique to our simultaneous 
elastic inversion results, litho-probability cubes were 
calculated for a total of 5 reservoir and non-reservoir 
facies. The inversion was performed in a layered 
stratigraphic framework constructed from interpreted 
horizons. This has yielded 3-D images of reservoir 
elastic properties and facies that better conform to 
the complex shapes of the channelized deposits. 

Introduction 

This paper presents the results of a 3-D simultaneous 
elastic inversion and a lithofacies classification over a 
Brazilian offshore field (~416 km2). The target was the 
Miocene sequence, with two main reservoirs 
producing 70000 bbl/day, each one with a 25 to 30m 
average sand isopach, within a tectono-sedimentary 
depositional context. There are three eletrofacies 
corresponding to the following lithofacies: high 
permeability sandstones representing the system 
channel depositional axes, interlaminated sandstone 
and shale corresponding to the main system´s inter-
channel heterogeneities and shale as non reservoir 
facies. The seismic response to lithology and fluid led 
to the definition of five seismic lithofacies in both 
reservoirs: shale, shaly sandstone with oil, oil sand, 
gas sand and water sand. 

This work integrated data from 12 wells with 
lithofacies logs, of which only six have real S-wave 
logs.  To build the stratigraphic model for the seismic 

inversion and lithofacies classification, eight main 
horizons, representing top and base of the units, were 
used. Four high density 3-D migrated seismic angle-
stacks (bin  6.25m * 12.5m) and one seismic velocity 
volume were considered for this study. The main 
steps and challenges are described in the following 
sections. 

Seismic Data Preconditioning 

Analysis of the seismic energy over some key wells 
shows a strong E-W lateral variation, as observed in 
Figure 1a. To create a realistic RMS amplitude map, 
covering the reservoir intervals, two ghost horizons 
were created by shifting the top horizon of the first 
reservoir up by 400ms and down by 1100ms. The 
ghost horizons define a 1.5sec time window suitable 
for estimating the signal energy around the 
reservoirs. To compensate for the lateral variation in 
seismic energy, an amplitude correction map (see 
Figure 1b) was extracted across the selected time 
window and applied to the four angle stacks.  

 
Figure 1: (a) Section showing the time window used 
to compute the RMS amplitude map. (b) Amplitude 
correction map applied to all angle stacks. 

 

Figure 2 shows the impact of this correction on maps 
and sections.  
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Figure 2: Seismic section before (a) and after (b) 
amplitude correction, and horizon slice at the base of 
the reservoir before (c) and after (d)correction.  

By comparing the energy of the synthetic seismogram 
with the seismic trace of each angle stack, the 
computed Scaling Factor (SF), obtained from the 
seismic wavelet matching, gives a good estimation of 
the seismic amplitude variation. A scaling factor close 
to 1 at the different wells should be achieved prior to 
inversion for wavelet stationary. Figure 3 shows the 
results of the wavelet extraction with the SF 
calculated before and after correction. This quality 
control (QC) gives confidence on the lateral amplitude 
correction applied to the different angle stacks. The 
correction was important to ensure the quality of the 
seismic inversion and of the inverted elastic 
properties used as the main input for the Bayesian 
lithofacies classification.  

 

 
Figure 3: Comparison between the wavelets and SF 
for each well. Extracted wavelets before (a) and after 
(b) the amplitude correction. Comparison (c) between 
the SF, for each well, before (blue) and after the 
correction (red). After correction, the SF values are 
around 1. 

 

A study of the time misalignment (DT) between angle 
stacks was also a key data conditioning step before 

inversion; poor data alignment leads to erroneous 
estimation of the AVO gradient and adversely affects 
the estimation of Vp/Vs. Time misalignment 
corrections were therefore applied prior to inversion 
to compensate residual NMO errors between the 
input angle stacks. These time corrections were 
computed by amplitude cross-correlation between 
consecutive angle stacks.  

Lithofacies Analysis from Well Logs 

From the 12 wells with digital logs, only 6 wells had 
real S-wave (Vs) logs. For the other wells, pseudo Vs 
were predicted using Castagna approach (Castagna 
et al., 1985). The synthetic Vs logs were only used to 
construct the low frequency initial model for the 
inversion, but were not considered for the inversion 
QC. Elastic attributes like P-Impedance (Ip), S-
Impedance (Is), Vp/Vs ratio and the difference “Ip-Is” 
were derived for all wells from the Vp, Vs and density 
logs. 

To create the training set for the lithofacies 
classification, fluid substitution was applied at the 
wells that had real Vs to create two extra facies:  
water sand and gas sand. The objective of fluid 
substitution was to model the elastic properties of the 
reservoir at the expected reservoir conditions (e.g., 
pressure, temperature, porosity, mineral type, and 
water salinity) and pore fluid saturation. Using the 
original well logs and the elastic values derived from 
the fluid substitution, several cross plots were 
analyzed to define the optimum combination of elastic 
attributes for discriminating the different lithofacies. 
Figure 4 gives an explanation about the fluid 
substitution applied in the oil sand reservoirs only to 
create the two extra facies. Finally, five lithofacies 
were used in this project: shale, shaly sandstone with 
oil, oil sand, gas sand and water sand.  

 
Figure 4: Crossplot selected for the lithofacies 
classification and scheme of the fluid substitution. 

 

Stratigraphic Elastic Inversion 

Eight horizons were provided by Petrobras to build 
the initial model; they were smoothed and edited to 
eliminate horizon crossing zones. The top of inversion 
window was created from a ghost horizon by shifting 
up the top first reservoir horizon by 200 ms. Top and 
base horizons from the two main reservoirs were 
used for the model layering. The base of the initial 
model was a geologic marker called Marco Azul. 

Well 1 Well 2 Well 3 Well 4 Well 5 Well 6 Well 7
After 1,3476 0,7669 0,7320 1,1424 1,0562 1,0104 0,8996
Before 1,0000 0,5352 0,4884 0,8883 1,0803 0,8823 1,0325
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The 3-D, multi-cube simultaneous inversion scheme 
starts from the initial layered elastic model defined in 
the time domain.  During inversion, the initial model is 
interactively perturbed using a simulated annealing 
procedure to find a global solution that optimizes 
simultaneously the match between the four input 
angle stacks and the corresponding synthetics, 
calculated by convolution with full Zoeppritz 
reflectivity equations.  In addition to a data mismatch 
term, the objective function contains 3-D spatial 
continuity constraints that are used to attenuate the 
effects of random noise. The inversion works by 
perturbing Vp, Vs and density in each cell of the 3-D 
stratigraphic grid. During inversion, independent 
perturbations of the different elastic parameters can 
be applied or perturbations can be coupled via 
correlations between Vp, Vs and density. In addition 
to updating the elastic parameters, the time-thickness 
of the micro-layers is also adjusted during the 
inversion process in order to maximize the coherence 
between the observed seismic events and the 
inversion layer framework. 

Figure 5 shows the inversion results extracted at the 
one key well location, together with seismic traces 
and residuals. Comparison of the smooth initial 
model, the real blocky well log with the blocky 
inversion results demonstrates that the inversion 
yielded excellent estimates of the Vp/Vs ratio with a 
good decoupling between Ip and Is. 

 

Lithofacies Classification 

Following the inversion process, a Bayesian 
classification technique was applied to predict 
lithofacies from the inverted seismic data. Figure 6 
illustrates the classification workflow. The log data (or 
pseudo-logs obtained by fluid substitution) are used 
to define a training set for each of the lithofacies that 
must be predicted. Cross plot of elastic attributes are 
created from the data points in the training set. The 
cross plot points are colour-coded according to lithofacies 
to assess visually the separability of the different 
lithologies. Next, a bivariate Probability Distribution 
Function (PDF) is fitted to each cluster of points using 
a non-parametric modeling technique. This 
conditional PDF is denoted by f(z|c) where z 
represents the elastic attribute vector (e.g., Ip and 
Vp/Vs) and c the lithofacies. After the training phase, 
the classifier is applied sample-by-sample to the input 
cubes of inverted elastic attributes: the likelihood of 
each lithofacies given the inverted attributes z, is 
calculated at each sample location from the computed 
bivariate PDFs. The procedure outputs likelihood 
cubes for the different lithofacies which can be used 
for uncertainty assessment. The most likely 
lithofacies, i.e., the facies c that maximizes f(z|c) is 
also calculated at each sample point. The maximum 
likelihood classification technique assumes implicitly 
that the occurrence of the different facies is a priori 
the same. In practice, geological information is often 
available about the facies proportions (e.g., 
information about net-to-gross ratio in the reservoir).  

This information can be incorporated using a priori 
facies proportions, p(c). To combine the a priori 
information with the seismic-derived facies 
information, a posterior probability is computed for 
each lithofacies by multiplying the prior probability by 
the corresponding seismic likelihood, i.e., p(c|z) 
f(z|c)p(c). Using this simple Bayesian updating rule, 
posterior probability cubes are computed for the 
different facies. The most probable facies can also be 
selected at each sample point.  

 
 Figure 5: Inversion QC. For Ip, Is and Vp/Vs ratio 
the black line is the original well log; cyan, the initial 
model; blue, the well log upscaled for the 
stratigraphic grid resolution; and red, the inversion 
results. With respect to the seismic traces, the black 
trace is the real seismic trace; red, synthetic trace 
created from the inversion results; and green, the 
difference between the real and synthetic trace 
(residual). 
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Figure 6: Workflow for the lithofacies classification. 
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Results 

Uncertainty assessment was one of the main 
objectives for geologist to better constrain the 
geological model in areas with sparse well control, as 
on the east side of the field. Log scale analysis of the 
relationship between rock facies and inverted seismic 
attributes highlights an important lateral variation of 
acoustic impedance in the reservoir due to variation 
of the overlying sediment column thickness. 
Extracting the impedance from the initial (low 
frequency) model along a key reservoir layer reveals 
clearly the presence of a large scale E-W impedance 
trend. This trend is still apparent in the inversion 
results, as shown in Figures 7a and 7b.  
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3000 80005500 3000 80005500
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Figure 7: (a) Initial impedance model extracted along 
a selected reservoir layer, (b) inversion result, and (c) 
relative impedance generated for the lithofacies 
classification. 

 

Cross-plots of seismic-derived attributes and 
Bayesian classification tests concluded that the best 
parameters for discriminating the five lithofacies were 
relative P-Impedance (R-Ip) and Vp/Vs ratio. The R-Ip 
model was generated by removing the low frequency 
initial model from the inverted results. Figure 8 shows 
the training set and PDF defined for each lithofacies  
in the R-Ip Vs Vp/Vs crossplot. The overall 
classification performance was summarized using a 
confusion matrix which gives information about the 
classifier success and mis-classification rates at blind 
wells used for validation. 

In traditional Bayesian classification, a priori facies 
proportions, p(c), are often assumed constant across 
the entire field. Defining global facies proportions for 
this field was not applicable due to the lateral 
heterogeneity of the sand distribution in different 
parts of the field. Instead, spatially variable facies 
proportions were defined based on the different 

depositional systems and production zones. In each zone 
(delimitated by black contours on Figure 9, a 3-D facies 
proportion trend was computed from facies log data at 
key wells. Next, in order to derive realistic lithofacies 
probability cubes, the following workflow was applied: 

- Step 1. Perform supervised Bayesian 
classification using the same a priori proportion 
for each lithofacies, i.e., p(c)= 0.2 for all five 
facies. The corresponding lithofacies 
probability (likelihood) cubes are shown in 
Figures 9a and 9c. 

- Step 2. Perform log analysis of facies 
distribution of key wells and define a 
vertically and laterally variable proportion 
trend in each field zone.  

- Step 3. Multiply the facies likelihood cubes 
obtained in Step 1 with the 3-D facies proportion 
trends to obtain the a posteriori litho-probability 
cubes depicted in Figures 9b and 9d.   

(a) (b)

(c)
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Figure 8: Attributes used for the classifier. (a) 
Relative P-Impedance. (b) Vp/Vs Ratio. (c) Bivariate 
PDFs fitted to each cluster of points. 

 

Figures 9e and 9f illustrate the impact of using spatially 
variable facies proportions instead of global values on the 
predicted lithofacies distribution. This spatial constraints 
allowed to better integrate the geological interpretation 
and capture the lateral heterogeneity of the reservoir. The 
definition of this lithofacies proportion was tested several 
times to achieve coherent results. In addition to providing 
useful information for well planning uncertainty analysis, 
the seismic-derived litho-probability cubes can easily be 
integrated as secondary data in reservoir 
characterization workflows using Sequential Indicator 
Simulation or Truncated Gaussian Simulation 
techniques, as for example in Doyen (2007).  



R. L. B. DUARTE,  R. CAMPOS,  J.F. ROSALBA, M. DURVAL, C.E. ABREU, J. TAVARES, J-L FORMENTO 
 

 ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

Twelfth International Congress of the Brazilian Geophysical Society 

5

 

0

1

0

1

(a)

(c)

Oil sand

(b)

(d)

(f)

Shaly sandstone
Water sand

Shale
Gas sand

(e)

Figure 9: Lithofacies classification results. Water 
sand probability using equal (a) and spatially variable 
(b) facies proportions. Oil sand probability using equal 
(c) and spatially variable (d) proportions. Most 
probable lithology using equal (e)  and spatially variable 
(f) proportions.  
 

Conclusions 

A probabilistic approach was applied to derive 
lithofacies information from inverted seismic attributes 
and quantify the uncertainty in seismic lithology 
prediction.  Careful data conditioning was critical to 
the success of the inversion and lithology prediction 
workflow. Results from the simultaneous elastic 
inversion, using four sub-angle stacks, gave us a 
good match with the well response. Lithology 
classification yields realistic geological features using 
five classes. The use of 3-D facies proportion cubes, 
derived independently from the seismic attributes, 
provided more geologically plausible facies models. It 
also allowed a better prediction of the producing and 
non-producing zones and a refining of its limits based 
on inversion and lithofacies classification results. With 
these results, the asset team will be able to update its 
geological model and quantify the uncertainty of facies 
occurrence for their infill process.  
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