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provide indications of the type of source rock, migration 
path, and alteration history of hydrocarbon deposits.  

A 2D marine seismic data survey acquired in 1999, which 
had originally been processed to prestack time migration, 
was reprocessed using surface-related multiple 
elimination (SRME) and prestack depth migration 
(PSDM). This was interpreted to provide regional scale 
horizons, which were used as input, along with other 
geological and geochemical information, for a petroleum 
system model of the whole basin. The interpretation 
highlighted several possible structural and stratigraphic 
traps. These, and the sea surface oil slick locations, were 
used to identify areas where CSEM data would most 
likely provide additional information to reduce exploration 
risk.   

Four separate prospects (all outside currently held 
concessions) were finally chosen following analysis of 
their CSEM detectability and seismic characteristics. The 
CSEM survey comprised more than 250km of towlines 
recorded by 136 multicomponent EM receivers. After the 
initial onboard processing, the following inversion and 
interpretation workflow was applied to the CSEM data 
sets: 

 Qualitative interpretation 

 1D anisotropic inversions, constraining the 
thicknesses with the seismic horizons to derive 
horizontal and vertical background resistivities 

 Up-scaling to 2D and 3D resistivity volumes 
(Figure 2) 

 Forward modeling to assess the background 
model validity  

 2.5D anisotropic inversions 

 3D anisotropic inversions 

 Integration with seismic and other data using 
Petrel* seismic-to-simulation software. 

All the 3D inversions (Mackie et al. 2007) in this project 
included both inline and broadside data, and utilized 
multiple frequencies to improve inversion sensitivity and 
depth resolution. Integration of the resistivity volumes 
obtained through 3D anisotropic inversions of the five 
CSEM datasets provided a new approach to better 
understand the earth model for the PSM and prospectivity 
study of the offshore Potiguar basin (Figure 3 and Figure 
4). The additional information can be used to guide further 
analysis and interpretation of prospective areas on the 
seismic data, highlighting the value of using EM 
techniques as a prospectivity ranking tool. More 
importantly, the whole integrated workflow demonstrates 
how the early integration of other data (in this case 
seismic, well, and satellite data) can help design a better 
CSEM survey and obtain a better inversion result which, 
in turn, helps in interpreting the original seismic image. 

 
 
 

SubAndean Foothills, SE Bolivia: MT survey to help 
delineate gas reservoir constraining resistivity 
models with well logs to test working structural 
models 

The seismic imaging issues of the near-vertical foldbelt 
structures in this region have increased the risks of drilling 
to the deep gas reservoir targets. The host structures are 
often displaced laterally with respect to the outcropping 
anticline structures, located below thrust faults (Ravaut et 
al., 2002).  

Well log resistivities (Figure 5) show a marked resistivity 
increase at the top of the relatively clean reservoir hosting 
sandstones of the Middle Devonian, compared to lower 
formation resistivities of the shallower formations. The 
contrast is sufficient for these deep structures to be 
mapped by surface magnetotelluric (MT) surveys. A 3D 
MT survey comprising 165 MT soundings at 500 to 
1000m spacing along dip lines, spaced 2 to 3km apart, 
was carried out over the present prospect, prior to 
completion of drilling by Petrobras.  

Figure 6 shows an overlay of two MT inversion model 
approaches. The line contours represent the 
unconstrained (blind) inversions, completed before 
drilling, and the later constrained inversion models. For 
the latter, where the working geological model and 
resistivity logs (supplied by Petrobras) were integrated to 
control the geometrical “layered” structure and resistivity 
of the starting model, the data were inverted for resistivity 
perturbations required to fit the observed MT data.  

The blind and the constrained inversions both show a 
resistive core offset from the well locations, consistent 
with the structure and resistivity logs from the wells 
(Figure 6).  

The present case study shows how the integration of 
different geophysical measurements at different stages of 
the interpretation workflow improved the mapping of deep 
gas reservoirs in an area of challenged seismic imaging, 
and helped reduce the drilling risk. 

Salt detection in Gabon by seismic-gravity 
simultaneous joint inversion 

Many examples from around the world indicate that 
conventional ray tomography can fail in the presence of 
salt. It is generally accepted that base-salt reflections are 
often distorted by complex salt bodies, and if a 
background model based on seismic data cannot 
accurately reconstruct the salt, it is not possible to update 
that model via ray tomography. As a secondary effect of 
this, distortion propagates vertically, and sub-salt marker 
horizons are also likely to be poorly imaged (Figure 7). 
Tomography based on interpretation of seismic data is 
likely to fail because salt bottoms are often difficult to 
interpret, broken, or mixed with migration artefacts. For 
the same reason, dip-field tomography is also unlikely to 
deliver the required results. 

Gravity provides a key indicator of salt in regions with this 
type of seismic response. The method can discriminate 
low density salt in a lateral sense, and when combined 
with seismic imaging for vertical resolution, it is possible 
to locate the position of the salt, even if it cannot resolve 
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its shape. By resolving both velocity and density 
simultaneously, joint inversion can detect where salt 
exists inside a particular multi-parameter model as it 
results in a sharp violation of accepted background 
velocity-density relationships such as Gardner’s rule.  

Hydrocarbon exploration in the South Gabon sub-basin 
has produced many large oil discoveries; however, 
developing accurate depth maps of its pre-salt objectives 
remains elusive. Vertical relief of the base-salt horizon—
the ultimate seal—is often less or equal to the uncertainty 
inherent in constructing the depth model. Established 
oilfields will usually have sufficient well data to build depth 
maps that are more accurate than maps based on 
seismic data, but depth maps for exploration areas often 
rely solely on seismic data. Perenco hypothesized that 
gravity data could be utilized in an exploration area to 
enhance the imaging of pre-salt seismic reflectors by 
providing additional input for prestack depth migration 
(PSDM). As a test, two vintage 2D seismic lines were 
reprocessed utilizing simultaneous joint inversion (SJI) 
technology developed by WesternGeco (Colombo, 
Mantovani et al. 2007, Colombo et al. 2007, Colombo et 
al. 2008). The results of the test encouraged Perenco and 
its partner to pursue application of the workflow to a 
complete 2D seismic dataset covering the area of 
interest.  

The study area has thick Barremian rift-phase Dentale 
formation sands and shales overlain by discordant 
Gamba sandstones (Mantovani and Dugoujard, 2011). 
This sequence is overlain by the Aptian Ezanga evaporitic 
sequence, which provides the ultimate top seal for 
Gamba or Dentale sandstone reservoirs. A thick, 
complex, Madiela carbonate layer forms most of the rest 
of the overburden. Changes in the facies and thickness of 
the Madiela formation — both vertically and laterally — 
lead to a poorly defined velocity model for this layer.  

Airborne gravity data were acquired along North-South 
lines spaced 250 m apart and East-West tie lines were 
acquired at 2,500 m spacing. After data levelling and 
processing, WesternGeco and Perenco worked together 
to create a realistic input model for the joint inversion. 
Joint inversion was used as a sensitivity test on the 
seismic interpretation and allowed elimination of non-
geological scenarios while preserving geophysically 
plausible scenarios (Mantovani and Dugoujard, 2011). 

The SJI process attempts to fit simultaneously both 
gravity and seismic datasets by finding the best velocity 
and density models, subject to two sets of constraints. A 
first set of constraints imposes structural similarity among 
the gravity and velocity models, as the subsurface 
anomalies are inverted from the seismic or gravity 
response of the same subsurface formations and are 
therefore expected to have a similar distribution. A 
second set of constraints maps the velocities into 
densities and vice-versa by imposing a relationship from 
petrophysical properties. Such a relationship may consist 
of empirical or analytic functions such as the Gardner’s 
equation or user-defined functions derived from well logs, 
as in this case for the Ezanga salt.  

 Salt represents an exception for the standard SJI in 
terms of the velocity-density relationship. The exploration 

play can be described as if inside a uniform space where 
the Gardner rule is valid, but a single body deviates from 
this rule and follows a well derived velocity-density trend 
instead. If a correct interpretation of the contours is used, 
the exception effect becomes invisible to the system and 
SJI can operate, minimizing the residuals as usual. If the 
salt interpretation is not correct, the anomalous log-
derived velocity-density trend that replaces the Gardner 
rule (Gardner et al., 1974) is misplaced, and the SJI 
exhibits a set of known artefacts. The interpretation is 
then interactively adjusted until these artefacts are 
removed. A new iteration of SJI is then run to prove the 
salt interpretation, and so on. The asymptote to this 
process is the production of the correct interpretation. As 
a secondary effect, SJI can derive the correct velocity and 
density model. 

Simultaneous joint inversion is therefore able to detect a 
bad salt interpretation, and can lead the interpreter 
towards correct salt boundaries. This is true even in 
cases, as in the example described, where not much 
information from the seismic section or velocity 
distribution is available. The salt detection workflow 
consists of fixing the expected non-Gardner trend into an 
interpreted salt, and then inverting for the salt shape. 

Where previous interpretation within the pre-salt section 
of this South Gabon sub-basin was limited by poor 
imaging, particularly beneath salt mounds (Figure 7), 
analysis of the reprocessed seismic lines provided 
improved continuity (Figure 8). The new data validate 
correlation of the Dentale formations between wells, and 
allow a better understanding of its faulting and structure. 
Base-salt depth might not yet be as accurate as desired, 
but future processing of a dense network of lines can be 
expected to pinpoint relative base salt highs. 

3D simultaneous joint inversion of seismic and 
magnetotelluric data for sub-salt imaging in the Gulf 
of Mexico 

The numerous coalescing allochthonous salt canopies 
that cover potential reservoir structures are particular 
challenges to deepwater Gulf of Mexico exploration. 
Properly interpreting these salt structures is a key to 
understanding and creating accurate tomographic velocity 
models, which in turn, are necessary to properly position 
and image the subsalt targets. By better integrating 
geology and geophysics, we are improving our models. 
This is particularly important in the Green Canyon-Garden 
Banks-Keathley Canyon-Walker Ridge areas where salt 
complexity is challenging, even with the latest wide-
azimuth acquisition and processing methods. Various 
approaches have been proposed (Gallardo and Meju, 
2004; Colombo and De Stefano, 2007) for multi-domain 
and multi-measurement integration, both in processing 
and interpretation. Here we show how to use 3D SJI of 
seismic and MT data to better define the base salt and 
improve sub-salt imaging (Virgilio et al., 2010). 

As described in the Gabon case study, SJI inverts 
simultaneously seismic and non-seismic data, as 
opposed to inverting each dataset separately. As stated 
before, the links between the different domains in the SJI 
algorithm are either geometrical or empirical. Geometrical 
links encourage different 3D models to have similar 
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geometrical variations, by means of cross-gradient 
computation of contours. Empirical laws link the absolute 
values of velocity and resistivity by means of well-known 
equations adapted and tuned for a specific project.  

Marine magneto-telluric MMT data were acquired with an 
array of seabed receivers recording horizontal electric 
and magnetic fields to provide the estimate of the full MT 
impedance tensor. The MMT time series were then 
processed using a robust remote reference algorithm. 
The processed data were found to be of good quality in 
the expected frequency range. For the 3D SJI proof of 
concept in the northern Walker ridge area, we started 
from an existing seismic reflection tomographic model 
from which we removed a portion of the salt (Figure 9, top 
right) to obtain the initial velocity model. Several iterations 
of targeted 3D SJI with reflection seismic and MMT data 
were run to obtain the final SJI velocity model (Figure 9 , 
bottom right) together with its corresponding resistivity 
model. The bottom left image in  Figure 8 shows how the 
3D SJI has led to a new 3D interpretation of the 
allochthonous salt base (colored) and positioning of the 
autochthonous top salt (blue). 

Figure 10 shows old wave-equation migration image 
overlaid by the velocity obtained with the old reflection 
tomography (left), and the SJI velocity model (middle: 
updates from initial model - blue is low and red is high 
update) with interpretations (right). The low-velocity zone 
immediately below the salt has been useful when 
interpreting the boundary salt sediments: the white 
horizon is the interpretation of the allochthonous salt from 
the single-domain seismic approach, the red is the SJI 
interpretation of the same formation (the difference 
between the interpretations reaches 700 m), the blue is 
the SJI interpretation of the top autochthonous salt, 
consistent with the indication of a deep high velocity 
coming from SJI. Note that the high velocity of 
autochthonous salt is absent in the single-domain velocity 
model (left) and present only in the SJI velocity model 
(middle and right) given the MMT capability of seeing the 
resistive salt anomaly. 

The 3D SJI example of seismic and MMT data over the 
northern Gulf of Mexico has led to new interpretation of 
the allochthonous and autochthonous salt. Simultaneous 
Joint Inversion reduces inversion uncertainties, and 
defines a new strategy for sub-salt interpretation; thereby, 
enhancing the role of non-seismic methods as supporting 
complex seismic depth imaging. 

Conclusions 

The presented case studies clearly show the value EM 
and potential field data can bring to building a more 
accurate model of the subsurface. However, to maximize 
this value, it is imperative that these data are not 
interpreted in isolation but integrated as far as possible, 
and as early as possible, with other available G&G data. 
The integration can range from combining various 
datasets in a cooperative interpretation to actually using 
simultaneous joint inversion to obtain a single earth model 
from two different datasets. In all cases the final goal is to 
reduce the risk inherent in all exploration and 
development decisions. 
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