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Abstract

By stacking on supergathers of sources and receivers
of arbitrary location around a central point, the
Common-Reflection-Surface (CRS) method is able to
produce simulated zero-offset sections of significant
signal-to-noise ratio. To do that, the method employs a
multi-parameter moveout, the generalized hyperbolic
moveout, in which the parameters (three in 2D and
eight in 3D) are directly estimated from the multi-
coverage data. Among its various advantages, the
CRS method has the drawback of a costly estimation
of the CRS parameters, presently carried out by multi-
parameter semblance analysis applied to the data.
Here we compare two different methods to extract the
CRS parameters, an automatic local-slope detection
(or plane-wave destruction) algorithm, that estimates
the parameters at a fraction of the cost, and the
conventional CRS method.

Introduction

Introduced by Hubral et al. (1998), the CRS method
represents a natural extension of the CMP method on
two accounts, namely (a) for each stacking trace location,
generally called a central point and usually at a CMP
location, it considers a supergather of source-receiver
pairs, arbitrarily located with respect to the central point
and (b) it uses a multi-parameter stacking moveout, the
generalized hyperbolic traveltime, with three parameters
in 2D and eight parameters in 3D. For an intuitive, less
technical introduction to the CRS method the reader can
refer to Hertweck et al. (2007) (see more references
therein).

In 2D, the general hyperbolic moveout used in CRS can be
written in the form

T (xm,h)2 = [T0 +A(xm− x0)]
2 +B(xm− x0)

2 +Ch2 , (1)

where xm and h denote, respectively, the midpoint and half-
offset coordinates of the source-receiver pair, x0 is the
coordinate of the central point, and T0 is the traveltime
along the ZO central ray. The point where the ZO central
ray hits the reflector is called the normal incidence point
(NIP). In this way, T0 is twice the traveltime along the normal
ray which connects the NIP to the central point.

In Equation 1, the coefficients, or CRS parameters, A,

B and C are given in terms of the conventional CRS
parameters (see, e.g., Hubral et al., 1998), β , KN and KNIP,
as

A =
2sinβ

v0
B =

2T0cos2β

v0
KN C =

2T0cos2β

v0
KNIP , (2)

where v0 denotes the near-surface medium velocity at the
central point, supposed to be known. In Equation 2, β

denotes the emergence angle of the ZO ray at the central
point, and KN and KNIP are the wavefront curvatures of
the so-called N- and NIP-waves, respectively, also at the
central point. As explained in Hubral (1983), the N- and
NIP-waves are fictitious eigenwaves, namely, they start as
wavefronts in the vicinity of central point, hit the reflector,
and return to the central point in such a way that the
curvatures at the initial and endpoints coincide. The two
waves, however, have a different behavior at the point
NIP: at that point, (a) the wavefront curvature of the N-
wave coincides with the curvature or the reflector and (b)
the NIP-wave curvature reduces to a point. Looking at
their upward propagating parts, the N-wave behaves as an
exploding reflector in the vicinity of the NIP, while the NIP-
wave behaves as a point diffraction from the NIP.

Semblance analysis

Conventional estimation of the three CRS parameters is
done by coherency analysis using semblance measures
(Neidel and Taner, 1971). Since a global three-parameter
search is computationally too expensive, that multi-
parameter search is broken into three, single-parameter,
independent searches (Hubral et al., 1998). The
obtained three parameters are taken as initial values for a
further local three-parameter search using the full moveout
Equation 1. Below, we summarize the three single-
parameter searches of the parameters A, B and C.

Search for parameter C

The first search is done on the seismic data organized in
common midpoint (CMP) gathers. In this case, setting xm =
x0, Equation 1 becomes

TCMP(h)2 = T (x0,h)2 = T 2
0 +Ch2. (3)

A comparison of Equation 3 and the well-known CMP
stack formula reveals that this stage reduces to the classic
velocity analysis method, with the difference that it is
performed on all time samples, t0.

After extraction of parameter C, a simulated ZO section can
be constructed by CMP stacking. That stacked section is
then used for the next stages.
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Search for parameter A

Under the assumption of a ZO section, the traveltimes are
approximated by setting h = 0 in Equation 1. We find,

TZO(xm)
2 = T (xm,0)2 = [T0 +A(xm− x0)]

2+B(xm−x0)
2 . (4)

In Equation 4, parameters A and B are related to dip and
curvature. In order to further reduce the search to one
parameter, we set B = 0 in Equation 4 to obtain a short-
offset approximation

Tplane
ZO (xm) = T0 +A(xm− x0) . (5)

Under Equation 5, the reflection events are locally
approximated to plane reflection events. Parameter A is
determined by coherency analysis using Equation 5.

Search for parameter B

Setting the previous estimation of parameter A in
Equation 4, we can estimate the parameter B using
a single-parameter coherence analysis. Following
equation 2, the above estimations of A, B and C, provide
the corresponding parameters β , KNIP and KN , under the
assumption of a known near-surface velocity, v0, at the
central point.

Estimation from local slopes

Santos et al. (2011) demonstrated that the complete set
of CRS parameters can be extracted from seismic data
by an application of modern local-slope-extraction. The
extraction of local slopes is done by so-called plane-wave
destructors and use basically the technique presented
in Claerbout (1992), Fomel (2002) and Schleicher et al.
(2009). The differential equation that describes a local
plane-wave event in a seismic section is given by

ψy(y, t)+ sψt(y, t) = 0 , (6)

where ψ(y, t) is the wavefield, t is the time coordinate and y
is the horizontal coordinate. The local slope is represented
by s. For each pair (ξ ,τ) in the seismic section, a small
window of points (yi, t j) is selected. Slope selection is
accomplished by the quadratic residual minimization

R(s) = ∑
(i, j)

[
Ψy(yi, t j)+ s

∆y
∆t

Ψt(yi, t j)

]2
, (7)

where Ψy(yi, t j)/∆y and Ψt(yi, t j)/∆t are discretized values
for the derivatives, ψy and ψt . The solution is given by

s∗(ξ ,τ) =− ∆t
∆y

∑(i, j) Ψy(yi, t j)Ψt(yi, t j)

∑(i, j) Ψ2
t (yi, t j)

, (8)

where (ξ ,τ) is the center of selected window.

As shown in Santos et al. (2011), an estimation of
parameters A, B and C can be obtained if local slopes of
common-midpoint (CMP) and common-offset (CO) gathers
are estimated. A summary of the procedure is described
below

CMP gathers: Under the usual assumption of
horizontally stratified (or small-dip) media, the ray

parameter for the reflection ray in the CMP gather with
fixed central point (midpoint) x0, can be approximated by
the traveltime slope (Castagna and Backus, 1993). The
derivative of Equation 3 with respect to source-receiver
offset 2h yelds

p =
1
2

d
dh

TCMP =
Ch

2TCMP
. (9)

Thus, if we know the local slope p = p(h, t) in a CMP
gather, we can use Equations 9 and 3 to eliminate C from
the moveout equation 3. This provides us with the NMO
coordinate map (Ottolini, 1983)

t0 =
√

t2−2ht p(h, t) , (10)

wich describes the relationship between the coordinates
(h, t) in a CMP section and the corresponding ZO time t0
at x0. Rewriting Equation 9, we see that an estimate of
parameter C at half-offset h and time t is given by

c(h, t) =
2 t p(h, t)

h
. (11)

Using Equation 10 we can transfer the obtained value of
c to the C-parameter section at (x0, t0). Since there are
redundant information from all available half-offsets, the
final C(x0, t0) can be calculated by averaging over all c(h, t)
that correspond to the same (x0, t0). In our numerical
examples, this averaging uses the coherence measure
associated with the extracted p at (h, t) as a weigth function.

CO gathers: The CRS parameters A and B can be
determined from a CO gather in the vicinity of x0. For
the case of a CO gather with a fixed half-offset h = h0,
Equation 1 reduces to

TCO(xm) = T (xm,h0)

=
√

TCMP(h0)2 +2AT0(xm− x0)+D(xm− x0)2, (12)

where the new parameter D is given by

D = A2 +B , (13)

and TCMP is the traveltime for the offset ray with midpoint at
x0 given in terms of the ZO traveltime T0 by Equation 3 with
h = h0.

From Equation 12, the local slopes q(xm, t = TCO(x)) in the
CO gathers can be written as

q =
d

dxm
TCO =

AT0 +D(xm− x0)

TCO
, (14)

Setting xm = x0 in equation 14, simplifies it to

AT0 = q(x0, t)TCO , (15)

which, in turn, can be used together with t = TCO to recast
equation 14 in the form

D(xm− x0) = t[q(xm, t)−q(x0, t)] . (16)
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Figure 1: Synthetic model for the experiments.

Therefore, substituting the above expressions in
Equation 12 and solving for the CMP traveltime, we
obtain the coordinate map

tCMP =
√

t2− t(xm− x0)[q(xm, t)+q(x0, t)] , (17)

between the CO and CMP sections. The coordinate map
in Equation 17 can be executed once q has been detected
at every point (xm, t) in the CO section.

Combining the above equations, we can determine
estimates a and b for parameters A and B in the CO section
according to

a(x0, t) =
tq(x0, t)

t0
, (18)

and

b(xm, t) =
t[q(xm, t)−q(x0, t)]

xm− x0
−a(xm, t)2, (19)

with xm 6= x0. Note that the estimates a(x0, t) and b(xm, t)
pertain to the single, chosen central point x0. Therefore,
they need to be transferred to the point (x0, t0) in the
parameter sections.After changes of coordinates, as before
for the case of the C section, many estimates of the
parameters, A and B will be attributed to the same ZO
time, t0. Finally, the parameters A and B are calculated
by average, just as it was done for parameter C.

Synthetic Example

Figure 1 shows the synthetic model of a stratified
medium with four homogeneous layers bounded by
smooth interfaces, between two half-planes, used in
the numerical experiments. By means of ray tracing,
the primary reflections of all interfaces were calculated
together with the CRS parameters, A, B and C. Multi-
coverage data acquisition was simulated with a total of
400 shots, recorded with 100 receivers in a common-
shot configuration with 20% added noise. Shot-receiver
intervals were 20m, resulting in 800 CMP locations. The
seismic signal was a 30 Hz zero-phase Ricker wavelet and
the sampling interval was 4 ms.

Three central points were chosen at x0 = 2.0 km, x0 = 4.0
km and x0 = 6.0 km, and the values of parameters at these
points, estimated by conventional CRS method. The values
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Figure 2: Experiments with 20% added noise. CRS
parameters A, B and C at midpoints x0 = 2.0 km (top),
x0 = 4.0 km (middle) and x0 = 6.0 km (bottom), extracted by
conventional CRS method (solid blue), local-slopes method
(solid green) and their exact values (red crosses). Diferent
semblance windows are used for eliminate spurious values
on the CRS extracted parameters.
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Figure 3: CRS parameter A for 600 central points between
1.0 km and 7.0 km for data with 20% noise added,
as extracted by the local slopes method (top), by the
conventional CRS method (middle) and the exact values
calculated by means of ray tracing (bottom). A 0.6
semblance window is used for eliminate spurious values
on the CRS extracted parameters.
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Figure 4: CRS parameter B for 600 central points between
1.0 km and 7.0 km for data with 20% noise added,
as extracted by the local slopes method (top), by the
conventional CRS method (middle) and the exact values
calculated by means of ray tracing (bottom). A 0.6
semblance window is used for eliminate spurious values
on the CRS extracted parameters.
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Figure 5: CRS parameter C for 600 central points between
1.0 km and 7.0 km for data with 20% noise added,
as extracted by the local slopes method (top), by the
conventional CRS method (middle) and the exact values
calculated by means of ray tracing (bottom). A 0.6
semblance window is used for eliminate spurious values
on the CRS extracted parameters.

of A, B and C parameters are depicted in Figure 2 (solid
blue lines), together with the respective exact values (red
crosses). Of course, exact values are only available at
the reflection events, while the extraction procedure yields
values at all times. Also in Figure 2 are depicted the
values of the three parameters estimated by the local-
slopes technique (solid green lines) at the same central
points x0 = 2.0 km, x0 = 4.0 km and x0 = 6.0 km. For this
aim, we considered the CMP sections, taking the CMP
location at these points, as well as only one CO section with
half-offset 10m and 100 midpoints. Diferent semblance
windows were used for eliminate spurious values on the
local slopes extracted parameters.

Parameter sections

To compare the parameter extraction methods, we
repeated the above experiments for 600 midpoints,
between 1.0 km and 7.0 km, along the model of Figure 1.
Figures 3, 4 and 5 show the parameter panels resulting
from the local-slopes and conventional CRS methods
applied to the 20% added noise data and the panels with
the exact values, respectively. The panels are masked
with the semblance section, muting all parameter values
at points where the semblance value is below 0.6. Also
shown in Figures 3, 4 and 5 are the times of the reflection
events in the ZO section (black solid lines).

Conclusions

A new algorithm based on an automated extraction of local
slopes in the data is able to estimate CRS parameters at
a fraction of the cost of the conventional algorithm based
on coherence analysis (semblance) procedures. Besides
computational economy, first examples show that the slope
extraction is sufficiently robust to allow for high-quality
extraction of all CRS parameters from the extracted slope
fields. The example also indicates that conventionally
extracted CRS parameters are superior to those obtained
from local slopes. This suggests using the slope-extracted
parameters as initial values for a subsequent global search
in the conventional CRS processing because it uses single-
parameter optimizations in data subsets to determine these
initial values. Such a procedure will imply a reduced overall
processing time.
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