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Abstract

With the increasing demand in complexity for
subsurface models in environments such as subsalt,
sub-basalt and pre-salt, full-waveform inversion (FWI)
is quickly becoming one of the model-building
methods of choice. While in principle capable of
handling all of the nonlinearity in the data, in practice
nonlinear gradient-based FWI is limited due to its
notorious sensitivity to the choice of starting models.
To help addressing model convergence issues in FWI,
in this paper we analyze the role of nonlinearity
in the so-called sensitivity kernels, which are the
centerpiece of gradient-based FWI algorithms. Using
a scattering-based approach and assuming acoustic-
only data, we start by reparameterizing the subsurface
model in terms of smooth and singular components
for both compressibility and density. This leads to a
decomposition of the data into a reference field that is
sensitive only to the smooth model, and a scattered
field sensitive to both smooth and sharp model
components. Focussing on the model backprojections
from the scattered data only, we provide expressions
for the Fréchet-derivative sensitivity kernels of all
four model parameters. Our results provide for the
decomposition of current FWI kernels into no less
than nine different sub-kernels which have explicitly
different levels of nonlinearity with respect to both
data and model parameters. This capability to discern
levels of nonlinearity within FWI kernels is key to
understanding model convergence in gradient-based,
iterative FWI. We illustrate this by analyzing some of
the sub-kernel terms in detail. The scattering-based
FWI kernel decomposition we provide could have
broad potential applications, such devising multiscale
FWI algorithms, and improving velocity model building
in the image domain using extended image gathers.

Introduction

For many years, the most common imaging techniques
were based on ray theory, such as, Kirchhoff migration.
But lately, as the industry have been facing geologically
more complex areas where these techniques were
not successful, new methods based on wave-equation
migration came into play – in the begining, one-way
wave-equation based, and more recently, two-way wave-
equation. All this became possible due to new aquisition
techniques which give better illumination of the subsurface,

and more powerful computational capacities.

But those new methods require more and more refined
Earth models. on the other, hand, even if migration has
advanced quickily with computer power, constructing these
models is still ray-based. Recently, one tool, based on the
two-way wave-equation, have been studied and developed
for Earth modeling: The full waveform inversion (FWI) (Vigh
et al., 2009).

The basic idea behind the FWI is the minimization of a
objective function that ”mesures” the difference between
observed seismic data and synthetic data from a earth
model. In the last decades, many studies on FWI were
made. On Virieux and Operto (2009) and Vigh et al. (2009)
one can find the state-of-art on the subject.

A series of paper publish on the eighties (Lailly, 1983;
Tarantola, 1984, 1986) brought to light the gradient-based
FWI in the applied geophysics field. In a few words, this
methods says that a model can be updated iteratively
with the help of the sensitivity kernels (SK). The SK’s are
operators that give the change in the wavefield due to
changes in the model parameters. With the adjoint of the
SK, one can evaluate the change in the earth model due to
wavefield residuals.

While in principle capable of handling all of the nonlinearity
in the data, in practice nonlinear gradient-based FWI is
limited due to its notorious sensitivity to the choice of
starting models. To help addressing model convergence
issues in FWI, in this paper we analyze the role of
nonlinearity in the sensitivity kernels.

To do so, we use a scattering-based approach
(Vasconcelos, 2008). Assuming a acoustic medium,
we reparameterize the subsurface model in terms of
smooth and singular components for both compressibility
and density. This leads to a decomposition of the data into
a reference field that is sensitive only to the smooth model,
and a scattered field sensitive to both smooth and sharp
model components.

Focussing on the model backprojections from the scattered
data only, we provide expressions for the Fréchet-derivative
sensitivity kernels of all four model parameters.

The scattering-based FWI kernel decomposition we
provide could have broad potential applications, such
devising multiscale FWI algorithms, and improving velocity
model building in the image domain using extended image
(EI) gathers (Rickett and Sava, 2002; Sava and Fomel,
2003; Symes, 2008; Sava and Vasconcelos, 2009, 2010).
As shown by Vasconcelos et al. (2009, 2010), there’s a
connection between the extended image conditions and
the interferometry formalism: the EI’s behave like locally
scattered wavefields in the image domain.
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Sensitivity kernels

The acoustic wave equation states a non-linear relation
between the wavefield and the model parameters, which
can be written as

G = f (mmm). (1)

where G is the acoustic wavefield and mmm are the model
parameters.

The sensitivity kernel ΦΦΦ f apears when a disturbance δδδmmm is
introduced in the model parameters, so that

G+δGtrue = f (mmm+δδδmmm) = f (mmm)+ΦΦΦ f δδδmmm+O(δδδmmm2) (2)

where δGtrue is the change in the wavefield. If only first-
order terms on the model changes are taken into account,
we get the linearized change in the wavefield, δG,

δG = ΦΦΦ f δδδmmm (3)

The expression for ΦΦΦ f is obtained from the secondary
sources (Tarantola, 1984), which can be seen as pseudo-
sources that give rises to changes in the wavefield due
to changes in the model parametrers. Given the acoustic
wave-equation

L(xxx)G(xxx, t;xxxs) = δ (xxx− xxxs)δ (t− t0) (4)

with

L(xxx) =
{

1
K(xxx)

∂ 2

∂ t2 −∇x ·
(

1
ρ(xxx)

∇x

)}
; (5)

where K is the bulk modulus, ρ is the density, and G is
the Green’s function respectively1. Introducing a model
pertubation – δK and δρ – in the operator L, and taking
its first-order contribution gives us

L(xxx)δG(xxx, t;xxxs) =−δL(xxx)G(xxx, t;xxxs). (6)

where the full secondary potencial, δL, is defined as

δL(xxx) =−
{

δK(xxx)
K2(xxx)

∂ 2

∂ t2 −∇x ·
(

δρ(xxx)
ρ2(xxx)

∇x

)}
. (7)

The right-hand side of (6) is the sencondary source, which
can be forward propagated to give δG2:

δG(xxx, t;xxxs) =−
∫
V

d3xxx′G(xxx, t;xxx′)∗δL(xxx′)G(xxx′, t;xxxs). (8)

In the frequency domain3, the expression above can be
written in matrix notation as

δ̂G(xxxg;xxxs) = ΦΦΦ f δδδmmm =
[

UUU f VVV f
][ δδδKKK

δδδρρρ

]
. (9)

From the expression above, the weighted changes in the
bulk modulus, δδδKKKkkk, and density, δδδρρρkkk, are obtained from
the wavefield residual δ̂G by4

[
δδδKKKkkk

δδδρρρkkk

]
= δδδmmmkkk = ΦΦΦ

†
f δ̂G =

[
UUU†

f
VVV †

f

]
δ̂G. (10)

1For simplicity sake, from time to time the variable
dependencies will be droped out.

2The symbol ∗ denotes time-convolution
3The Fourier transform of a wavefield p is p̂(xxx,ω;xxxs) =∫

∞

−∞
p(xxx, t;xxxs)e−iωt dt.

4The symbol † stands for adjoint matrix.

Figure 1: δG0 evaluated at xxx for a source at xxxs. For
each xxx′ may there be a secondary source −δL0G0
which contributes to δG0 (botton). Then, this source is
propagated to xxx (top). Contributions from all xxx′ are then
integrated.

Wavefield separation and sensitivity kernels

The same ideia summarized above is applied on the
system of wave-equations for the reference and scattered
wavefields (Vasconcelos, 2008) shown below

L0 G0 = δ (xxx− xxxs)δ (t− t0), (11)
LGS = −VG0, (12)

with

L0 =

{
1

K0

∂ 2

∂ t2 −∇ ·
(

1
ρ0

∇

)}
; (13)

L =

{
1

K0 +∆K
∂ 2

∂ t2 −∇ ·
(

1
ρ0 +∆ρ

∇

)}
; (14)

V = L−L0, (15)

where K0 and ρ0 stands for the smooth (reference) part of
the model, ∆K and ∆ρ represent the singular one, i.e., K =
K0 +∆K and ρ = ρ0 +∆ρ; and G0 and GS are the reference
and scattered wavefields, respectively, so that G = G0+GS.

The secondary sources for (11) due to model pertubations
δK0 and δρ0 introduced in L0 is analogous to the one for
(4), so that

L0(xxx)δG0(xxx, t;xxxs) =−δL0(xxx)G0(xxx, t;xxxs), (16)

where δL0 is the same of (7) but the replacement of K
and ρ for K0 and ρ0, respectively. This potencial is called
reference secondary potencial, which allows us to evaluate
the change in the reference wavefield, δG0,

δG0(xxx, t;xxxs) =−
∫
V

d3xxx′G0(xxx, t;xxx′)∗δL0(xxx′)G0(xxx′, t;xxxs).

(17)
A cartoon representing the operation described above can
be seen in Figure 1.

Introducing model pertubations δK0, δρ0, δ∆K and δ∆ρ in
operators L and L0 of (12), we arrive in the expression of
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the secondary sources, ∆s, for the change in the scattered
wavefield, δGS,

L(xxx)δGS(xxx, t;xxxs) = ∆s(xxx, t;xxxs)

= −V(xxx)δG0(xxx, t;xxxs)−δL(xxx)G(xxx, t;xxxs)

+δL0(xxx)G0(xxx, t;xxxs),

(18)

with (7) rewritten as

δL=−
{(

δK0 +δ∆K
(K0 +∆K)2

)
∂ 2

∂ t2 −∇ ·
[(

δρ0 +δ∆ρ

(ρ0 +∆ρ)2

)
∇

]}
,

(19)
which allows us to evaluate the change in the scattered
wavefield, δGs, by

δGS(xxx, t;xxxs) =
∫
V

d3xxx′G(xxx′, t;xxx)∗∆s(xxx′, t;xxxs). (20)

Expression (20) can be decomposed in 8 terms:

δGS(xxx, t;xxxs) = −
{∫

V
d3xxx′G0(xxx′, t;xxx)∗V(xxx′)δG0(xxx′, t;xxxs)+∫

V
d3xxx′GS(xxx′, t;xxx)∗V(xxx′)δG0(xxx′, t;xxxs)+∫

V
d3xxx′G0(xxx′, t;xxx)∗δL(xxx′)G0(xxx′, t;xxxs)+∫

V
d3xxx′GS(xxx′, t;xxx)∗δL(xxx′)G0(xxx′, t;xxxs)+∫

V
d3xxx′G0(xxx′, t;xxx)∗δL(xxx′)GS(xxx′, t;xxxs)+∫

V
d3xxx′GS(xxx′, t;xxx)∗δL(xxx′)GS(xxx′, t;xxxs)

}
+∫

V
d3xxx′GS(xxx′, t;xxx)∗δL0(xxx′)G0(xxx′, t;xxxs)+∫

V
d3xxx′G0(xxx′, t;xxx)∗δL0(xxx′)G0(xxx′, t;xxxs).

(21)

Each of this terms gives contributions of different order to
δGS. The Figures from 2 to 9 show cartoons representing
the contributions of each term.

Model reparametrization an adjoint SK’s

In the frequency domain, (17) and (20) can be written in
matrix notation as

δ̂G0(xxxg;xxxs) =
[

UUU000 VVV 000 000 000
]

δδδKKK000
δδδρρρ000

δδδ∆∆∆KKKkkk

δδδ∆∆∆ρρρ

 , (22)

e

δ̂GS(xxxg;xxxs) =
[

UUU VVV UUU∆∆∆ VVV ∆∆∆

]
δδδKKK000
δδδρρρ000

δδδ∆∆∆KKKkkk

δδδ∆∆∆ρρρ

 , (23)

due to a reparametrization of the model.

From (21), we can write

ΦΦΦ =
[

UUU VVV UUU∆∆∆ VVV ∆∆∆

]
=

n=8

∑
i=1

ΦΦΦi =
n=8

∑
i=1

[
UUU i VVV i UUU∆∆∆,i VVV ∆∆∆,i

]
. (24)

Figure 2: Term 1 , Change in GS due to single-scattering
of the change in the reference wavefield by the scattering
potential (singular part of the model).

Figure 3: Term 2 , Change in GS due to multi-scattering
of the change in the reference wavefield by the scattering
potential (singular part of the model).
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Figure 4: Term 3 , Change in GS due to single-scattering
of the reference field by the full secondary potencial.

Figure 5: Term 4 , Change in GS due to multi-scattering of
the reference field by the full secondary potencial.

Figure 6: Term 5 , Change in GS due to single-scattering
of the scattered field by the full secondary potencial.

Figure 7: Term 6 , Change in GS due to multi-scattering of
the scattered field by the full secondary potencial.

Figure 8: Term 7 , Change in GS due to multi-scattering of
the reference field by the reference secondary potencial.

Figure 9: Term 8 , Change in GS due to single-scattering
of the reference field by the reference secondary potencial.
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In this new parametrization, the weighted changes in the
model must be written as


δδδKKKkkk

000
δδδρρρkkk

000
δδδ∆∆∆KKKkkk

δδδ∆∆∆ρρρkkk

 =


δδδKKKkkk

000,0
δδδρρρkkk

000,0
000
000

+


δδδKKKkkk
000,S

δδδρρρkkk
000,S

δδδ∆∆∆KKKkkk
,S

δδδ∆∆∆ρρρkkk
,S



=


δδδKKKkkk

000,0
δδδρρρkkk

000,0
000
000

+ n=8

∑
i=1


δδδKKKkkk

000
,i
,S

δδδρρρkkk
000
,i
,S

δδδ∆∆∆KKKkkk ,i
,S

δδδ∆∆∆ρρρkkk ,i
,S

 . (25)

From (22) and (23) we can evaluate the weighted changes
in the model for a given pair (xxxg;xxxs) by[

δδδKKKkkk
000,0

δδδρρρkkk
000,0

]
=

[
UUU000

†

VVV 000
†

]
δ̂G0, (26)

and 
δδδKKKkkk

000
,i
,S

δδδρρρkkk
000
,i
,S

δδδ∆∆∆KKKkkk ,i
,S

δδδ∆∆∆ρρρkkk ,i
,S

=


UUU†

i
VVV †

i
UUU∆∆∆

†
,i

VVV ∆∆∆
†
,i

 δ̂GS. (27)

Evaluation of δδδKKKkkk
000

As seen in (25), each weighted change in the model is
composed of 9 terms. But, due to similarities in the format
of theses terms, we need only to evaluate 2 of them. The
others come from those two easily. Let’s see those two
terms for δδδKKKkkk

000.

The first term evaluated is δδδKKKkkk
000,0. If we consider δδδρρρ000 = 000,

(17) becomes, in the frequency domain,

δ̂G0(xxxg;xxxs) =−
∫
V

d3xxx′
ω2

K2
0 (xxx
′)

Ĝ0(xxx′;xxxg)Ĝ0(xxx′;xxxs)δK0(xxx′).

(28)

Using (26), we get

δKk
0,0(xxx

′
i) =−

ω2

K2
0 (xxx
′
i)

direct wavefield
cross-corralation︷ ︸︸ ︷

Ĝ∗0(xxx
′
i;xxxs) Ĝ∗0(xxx

′
i;xxxg)δ̂G0(xxxg;xxxs)︸ ︷︷ ︸

back-propagation of δ̂G0

.

(29)

Figure 10 shows a cartoon that represents the operation
above.

Comparing (28) with the third to the eighth term of (21),
keeping δδδρρρ000 = 000, we see that δδδKKKkkk

000
,3
,S to δδδKKKkkk

000
,8
,S are similar to

δδδKKKkkk
000,0 provided the suitable substitutions of the G0’s by the

GS’s, and δ̂G0 by δ̂GS.

The second term evaluated is δδδKKKkkk
000
,1
,S. Analogously to the

previous term, we consider δδδρρρ000 = 000. So, in the frequency

.

.

.

Figure 10: Evaluating the weighted change in the reference
part of the bulk modulus due to the reference wavefield
residual δ̂G0. In red, we see the back-propagation of the
reference wavefield residual δ̂G0 from the receiver; in blue,
we see the direct reference wavefield from source; a cross-
correlation of both wavefields are performed at point xxx′i.

domain, the first term of (21) becomes

δ̂GS,1(xxxg;xxxs) =
∫
V

d3xxx′ Ĝ0(xxx′;xxxg)V(xxx′)[∫
V

d3xxx′′
ω2

K2
0 (xxx
′′)

Ĝ0(xxx′′;xxx′)Ĝ0(xxx′′;xxxs)δK0(xxx′′)

]
.

(30)

Using (27), we get

δKk,1
0,S(xxx

′′
i ) =

∫
V

d3xxx′
ω2

K2
0 (xxx
′′
i )

Ĝ∗0(xxx
′′
i ;xxxs)︸ ︷︷ ︸ Ĝ∗0(xxx

′′
i ;xxx′)︸ ︷︷ ︸V(xxx′)︸ ︷︷ ︸ Ĝ∗0(xxx

′;xxxg)δ̂GS(xxxg;xxxs)︸ ︷︷ ︸ .
(31)

?����
sum over

all possible
reflector/scatterer

locations ?
direct wavefield
cross-correlation

Second
back-propagation

?
weighting by the

reflectors/scatterers ?
back-propagation

Summary and Conclusions

In this paper we present a decomposition of current full-
waveform inversion (FWI) sensitivity kernels into several
sub-kernels using a scattering formulation that relies on
decomposing the model space into smooth and singular
model components. It is important to note that while
the superposition of all our sub-kernels yields a Frèchet
gradient that is no different than those currently use in
FWI, each individual sub-kernel has different contributions
in terms of nonlinearity with respect to both model and
data components. We show that the contributions of each
sub-kernel can be in fact physically interpreted in terms
of orders of scattering with respect to the unknown model
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.

.

.

.

Figure 11: Evaluating the first-term contribution for
weighted change in the reference part of the bulk modulus
due to the scattered wavefield residual δ̂GS. In red,
we see the back-propagation of the reference wavefield
residual δ̂GS from the receiver; in yellow, the weighting
by the scattering potencial; in green, the second back-
propagation from the weighting point to xxx′i; in blue, we
see the direct reference wavefield from source; a cross-
correlation of both wavefields are performed at point xxx′′i .

parameters. Thus, using our scattering parameterization
and sub-kernel approach in FWI practice will in principle
allow for better control of nonlinear effects at each iteration
of FWI model optimization.

In addition to its potential benefits in controlling
convergence of FWI routines, we point out that the
underlying scattering formulation of our method allows
for a direct connection to migration-type imaging and
model building. Migrated seismic images can in principle
be taken an estimate for the sharp/singular part of the
subsurface model, while models from velocity analysis
are a proxy for the smooth model component. Under
that framework, our formalism provides for an explicit
method for jointly using velocity models and migrated
seismic images in FWI as well as for understanding their
interplay in the model-building process. Likewise, the
scattering kernels presented here can be directly used
in the the context of extended images (EIs) in devising
nonlinear wave-equation migration velocity model building
techniques. In practice, we expect challenges to arise
when choosing how to separate/represent the smooth
and sharp model components, and when decomposing
the corresponding data components. So while there are
potential benefits in describing and including higher-order
nonlinear terms in FWI using our formulation, achieving
them in practice with both synthetic and field data is the
subject of ongoing research.
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