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Abstract   

We have studied the sensitivity to initial conditions, at the 
critical state, of the bi-stable self-organized critical model 
introduced in a previous work by our group (Espirito 
Santo et al., this Conference) to model the reversals that 
the Earth’s magnetic field has suffered along its whole 
history. The basic model which essentially consist in a set 
of random nodes simulating magnetic vortices in the 
interior of the Earth’s liquid core, systematically removes 
those nodes with lower absolute values, and theirs 
neighbors. At the stationary state, two possible 
“magnetizations” are possible for the whole system: up 
and down (mimicking normal and reverse magnetizations, 
respectively). We show that the dependences correspond 
to power laws during a time interval depending on the 
simulated system size, after which present plateaus. 
However, in the limit N � ∞ the nontrivial power-law 
regime should last forever. As the number of elements 
increases so does the time needed to reach the plateau. 
From the dependence between those quantities we have 
obtained the dynamical exponent z.  

 
Introduction 
 
Motivated by the interest that reversals have triggered 
during the last decades and by their intrinsic importance 
for the human kind, Espirito Santo et al. [1] introduced a 
model that present self organized criticality.  
 
The model simulates the Earth’s liquid core and the 
electric current structures on its volume by nodes 
distributed on an LxL square lattice. It explores sets of 
equally spaced points at the Earth’s equator. To each of 
these nodes it is initially assigned a random value 
between -1 and 1 to simulate both, the accumulated 
magnetic energy at each of the simulated positions and 
the magnetic moment orientation. The time step for the 
model is defined by looking for the lowest absolute value 
through the whole system and changing it and its four 
nearest neighbors by new random values between -1 and 
1. With this it is simulated a more or less continuous 
energy flux to the core bulk (this is the reason to pick the 
lowest value) and the possible absorption of smaller 
vortices. In this way it is also simulated the creation of 
new vortices. At the same time, the assignment of new 

random values, to the lowest in absolute and its 
neighbors, works as a continuous release of energy out of 
the system. 

This process is repeated several times (usually between 
106 and 108 times) to obtain stationary distributions for the 
quantities we are interested in. In the original paper (and 
also here) periodic boundary conditions were used. 

Constructed in the way it has been done, the model 
qualifies as a Bak-Sneppen one [2]. The Back-Sneppen 
model probably is the simplest model presenting self-
organized criticality, i.e., the tendency to a stationary 
critical state without necessity of a fine tuning.  

The Bak-Sneppen model is a general model that has 
found applications in a large number of fields among 
which we can mention evolution [2], the brain [3], the 
cosmic rays spectrum [4] and X-rays bursts at the Sun’s 
surface [5]. 

Many scientific efforts have been devoted to characterize 
the Bak-Sneppen model from several points of view. 
Examples of them are: its correlations from detrended 
fluctuation analysis [6], damage spreading on it [7], and 
its behavior under reduction to near zero dimension [8]. 

The magnetization M for the system is defined as:  

M = ∑i=1 Si/N                                  (1) 

where the sum runs over all the nodes and N = LxL is the 
total number of nodes. It can take values between -1 and 
1 (corresponding to all nodes in the -1 value and to all 
nodes in the 1 value, respectively). 
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Figure 1.- Distribution of the nodes values at the 
stationary state. It has a well-like form with vertical walls 
at ± 3.5 approximately.  

Beginning with an arbitrary distribution of accumulated 
magnetic energy at each node, the subsequent activity 
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will be completely uncorrelated in space and time. But as 
times goes by (and then, the mean accumulated energy 
increases in absolute value as a consequence of 
selecting and changing the lowest absolute values) it will 
be more and more likely that near neighbors are 
consecutively changed. After a transient the system 
reaches a steady state characterized by a well-like 
distribution for the accumulated energies and a couple of 
thresholds, ± Ec for the distribution of the lower barriers 
(see Figures 1 and 2). The distribution of lower energies 
vanishes above + Ec and below - Ec.  
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Figure 2.- Distribution of the lower absolute values for 
nodes at the stationary state. It has an inverse V-like 
shape with vertical walls at ± 3.5 approximately.  
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Figure 3.- Magnetization (see text) versus time for a 
100x100 system during a short simulation (~45000 time 
steps).  

Two main characteristic are relevant for the present 
study: first, that the simulations present reversals, i.e., 
changes in the sign of the magnetization defined in 
Equation (1); and second, that the distribution function for 
the inter-reversal time is a power-law,  

f (t) = c.td                                  (2) 

where f (t) is the frequency distribution of periods between 
consecutive reversals, c is a proportionality constant and 
d is the exponent of the power-law (and also the slope of 
the graph in log-log plots), pointing to the possibility of the 
liquid core of the Earth be in a critical self-organized state 

(see figures 3 and 4). For the present case we have 
approximately -1.68 as slope value. 

The rest of the paper is organized as follows: first, we 
present the Method, later on we present the Results of 
our simulations as well as a comparative study with 
experimental results and a discussion on their possible 
connection with previous works on the statistics of 
geomagnetic reversals. Finally, we present our 
conclusions and some possible trends for future works. 

 
Method 

The Hamming distance between two systems A and B 
composed by N elements each is usually defined by: 

H =  ∑i=1 │ Ai - Bi │/ N                         (3) 

where H is the Hamming distance, Ai and Bi are the 
corresponding elements of each systems and the sum 
runs over the whole systems. 

To calculate the sensitivity to initial conditions it would be 
ideal to initially perform the simulations for a single 
system which, once at the stationary state be duplicated. 
In the copy system a few nodes would be randomly 
changed and, after this, the Hamming distances between 
both systems (the original and the slightly modified one) 
calculated for each time step of the simulation. The 
sequence of generated random numbers, however, would 
have to be unique for both.  
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Figure 4.- Distribution of time between consecutive 
reversals (both from positive to negative and from 
negative to positive). 
 

The peculiarities of our model, however, prevent us of 
doing so. Note that even if the system attains a single 
stationary state, this state is characterized by to different 
(and equiprobable) polarizations, which makes that the 
magnetization as a function of time follow a behavior 
changing of sign continuously. In this way, the Hamming 
distance oscillates without bringing to us any valuable 
information.   

Furthermore, any tentative of extracting relevant 
information, for example, of the distribution of traditional 
Hamming distances will be frustrated because nodes are 
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random numbers and their difference distribution is a 
usual Gaussian. 

Consequently, we have adopted an alternative strategy.  

By looking at Figure 2 we note that the limiting values for 
the lower absolute values are reasonably well defined, 
even for the system sizes that we have used. 

Given that at the stationary state the distribution of lower 
absolute values presents two thresholds above which it 
vanishes, we have studied the time dependence of lower 
absolute values as a function of time beginning at a 
completely disordered state.  

We have done this type of study for several system sizes 
and from the dependence on it we have extracted a 
dynamical exponent z. 
 
Results  

The results for the time dependence of the lower absolute 
value in one simulation with system size 300x300 are 
presented in Figure 5.   

 
Figure 5.- Lower values (absolute values) as a function of 
time for a 300x300 system size. The initial state is a 
disordered one and initially tends to the stationary state 
following a power law. The arrow points to the 
interception between the stationary value level and the 
straight line of the power law. The interception 
corresponds to a value of approximately 30,000 times 
steps. 

We note in Figure 5 that initially the lower absolute values 
growths with time following a power-law. After a given 
time the values can be found between zero and the 
thresholds ± 3.5 after which a plateau is established (note 
that we have plotted just positive values, i.e., the absolute 
value of lower nodes). To find in a unique fashion the time 
that for a given system size the simulation takes to attain 
the plateau we have determined the interception between 
the power-law extrapolation and the plateau extrapolation 
(as indicated by the arrow in Figure 5).  

For the case shown in Figure 5, the time needed to reach 
the plateau was approximately 30,000 time steps. We 
have explored several system sizes (LxL where L = 25, 
50, 100, 200 and 300).The result for the time needed to 
reach the plateau as a function of the system size is 

presented in Figure 6. From the slope we extracted the 
value of our dynamical exponent z = 0.96 ± 0.08.  

10 100
100

1000

10000

 

 

T
im

e 
to

 k
ne

e 
(a

.u
.)

System size 

 
Figure 6.- Relaxation time as a function of system size. 
The systems were LxL with L = 25, 50, 100, 200 and 300. 
From the slope we extract the dynamical exponent z. 
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Figure 7.- Evolution of the distribution function of node 
values from a completely disordered state to the self-
organized critical state as a function of time (see inset). 

It is worth to mention here that, as can be noted in Figure 
1, although the distribution function of nodes at the 
stationary state is more or less well defined, it is very 
noisy. So, trying to accompany the tendency of the 
systems to the stationary state by, for example, 
comparing (calculating the difference between) nodes 
distribution functions at different times, will give 
considerable errors. However, this is a potentially useful 
tool is we use large enough system sizes. To illustrate 
this, we present in Figure 7 the evolution of the 
distribution function of node values from a completely 
disordered state to the self-organized critical state as a 
function of time.  

In Figure 8 we represent the absolute accumulated 
difference between the stationary distribution (gray in 
Figure 7) and the rest of the distributions. Although the 
curve seems to be soft, it is affected by considerable 
errors that can be avoided only through the realization of 
simulations with system sizes well above the ones we 
have used. We let this study for the future. 
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Figure 8.- Absolute value of the difference between the 
distributions in Figure 7 and the final state. From left to 
right 2x104, 3x104, 5x104, 1x105, 5x105, 7x105, and 1x106 
time steps. From the interpolation it can be extracted the 
time needed to reach the plateau. 
 

Conclusions 

We have obtained for a self organized critical model 
representing the Earth’s magnetic field reversals the 
variation of the time needed to reach the stationary state 
as a function of system size. For finite systems sizes, N, a 
plateau is observed if enough time elapses, but, in the 
limit N �∞, the nontrivial power-law regime should last 
forever. As the systems size increases so does the time 
required to reach the plateau; from this dependence we 
have obtained the dynamical exponent z, by following a 
special methodology imposed by particularities of the 
model. We have done this in 1D (not shown) and 2D and 
from that we can asseverate that the result is robust in the 
sense that the tendency to the plateau is always attained 
through a power-law. The search for physical quantities 
that effectively bring us to compare the separation of two 
systems (an original and a slightly altered copy of the 
former) as a function of time is one of the aims of future 
works to be published elsewhere.  
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