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Abstract

In seismic migration, after the wave propagation
process, an important step to obtain a migrated image
is the application of an image condition. Several
alternative forms of imaging conditions have emerged
in the recent past that are evaluated by the quality of
the output amplitudes and artifacts produced. In this
paper, we present new stabilized least-squares image
conditions and compare them to previously proposed
forms. Our numerical experiments on the Marmousi
data set show that they produce satisfactory results.

Introduction

The theoretical imaging condition of Claerbout (1971)
consists of dividing the upcoming wavefield by the
downgoing wavefields in the frequency domain and
summing the result over all frequencies and sources used
in the process. Because we do not know the real
reflector position, this division must be carried out at all
image points. This can cause some instability during
the process, because the downgoing wavefield is zero
in points off the reflector. To try solve this problem,
different techniques have been proposed, the first being
a crosscorrelation instead of the theoretically required
deconvolution (Claerbout, 1971). However, this procedure
destroys the amplitude information contained in the data.
More recent attempts to approximate the deconvolutional
imaging condition try to avoid this to recover the reflection
coefficient at the image point (Valenciano and Biondi, 2003;
Guitton et al., 2007; Schleicher et al., 2008; Vivas et al.,
2009).

The reflection coefficient can be estimated by a least-
squares procedure (Arienti et al., 2002). Its solution
consists of dividing the crosscorrelation of the upcoming
and downgoing wavefields by the autocorrelation of the
downgoing wavefield. To stabilize this solution, Schleicher
et al. (2008) proposed two possible modifications:
to add a small constant to the autocorrelation of the
downgoing wavefield in the denominator, or to smooth this
denominator before the division, modifying the original idea
of Guitton et al. (2007) of smoothing the absolute value of

the downgoing wavefield in the denominator.

Based on the same fundamental principles, Vivas et
al. (2009) proposed a stabilized least-squares imaging
condition that, different from the other conditions, started at
a least-squares imaging condition that used the sum over
all sources before the division of the wavefields. To stabilize
the division, Vivas et al. (2009) replace the denominator at
points of low value by a proportion of its average value.

In this paper we combine the ideas of Vivas et al.’s
stabilized least-squares condition with the stabilization
techniques of Schleicher et al. (2008). We test the so-
created new stabilized least-squares imaging conditions on
the Marmousi data and compare them to the versions from
the literature.

Theory

Wave-equation migration tries to undo the effects that
the wave propagation had on the surface data Q(xr,yr;ω)
recorded at the receiver position xr = (xr,yr,z = 0). These
effects are generally approximately described by the
acoustic wave equation which, after Fourier transform, is
given by

(
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P(x,ω) =−δ (x−xs), (1)

where P(x,ω) is the wavefield being propagated at a point
x = (x,y,z), υ(x) is the wavefield velocity, xs denotes the

source position, and ∆ = ∂ 2

∂x2
+ ∂ 2

∂y2
. The solution of this

equation at xr must be equal the recorded surface data
Q(xr,yr;ω), i.e, the wavefield P(xr,yr,z = 0;ω) must satisfy
the boundary condition

P(xr,yr,z= 0;ω) = Q(xr,yr;ω). (2)

To migrate the data Q(xr,yr;ω) means to map this solution
into depth. For this purpose, equation (1) is decomposed
into two one-way equations given by
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PU (x,ω) = 0 (3)

with initial condition PU (x,y,z= 0,ω) = Q(x,y;ω) and
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PD(x,ω) = 0 (4)

with initial condition PD(x,y,z = 0,ω) = δ (x−xs), where PD
e PU represent the downgoing and upcoming wavefields,
respectively
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We use these one-way wave equations to simulate the
wave propagation from initial conditions at z = 0 into
the underground, where the downgoing wavefields are
propagated forward from t = 0 and the upcoming wavefields
are propagated backward from t = tmax.

After the propagation step, an imaging condition must be
applied to obtain the final migrated image. Theoretically,
the correct imaging condition is the deconvolution (division
in the frequency domain) of both wavefields at reflector
depth to recover the reflection coefficient as the amplitude
of the obtained image (Claerbout, 1971)

R(x) =
Nω

∑
j=1

PU (x,ω j)

PD(x,ω j)
, (5)

where Nω is the number of frequency used in the process.
Because the reflector position is unknown, this division
must be carried out at all image points. This implies
a certain instability during the process, because the
downgoing wavefield, which is in the denominator of
equation (5), will be zero at points that are not part of a
reflector. For this reason, it is necessary to find a way to
stabilize the imaging process. Some ideas are described
below.

Imaging conditions

Crosscorrelation

The simplest and most stable imaging condition is
the one proposed by Claerbout (1971). It uses a
simple crosscorrelation of the upcoming and downgoing
wavefields, i.e., a convolution of the upcoming wavefield
with the complex conjugate of the downgoing wavefield,

Rc(x) =
Nω

∑
j=1

PU (x,ω j)P
∗
D(x,ω j), (6)

where the asterisk denotes the complex conjugate.

This condition is obtained as a simplification of the
expression

R(x) =
Nω

∑
j=1

PU (x,ω j)P
∗
D(x,ω j)

PD(x,ω j)P
∗
D(x,ω j)

, (7)

which is obtained from equation (5) by multiplication of
numerator and denominator with P∗

D(x,ω j), an operation
which moves all phase operations in the numerator and
makes the denominator real.

Equation (7) does not solve the problem of division by
zero. The advantage is that now the denominator is only a
scale factor that no longer contains any phase information,
i.e., information about the reflector position. Thus, if our
interest is to know the reflector position with no amplitude
preservation, the denominator can be omitted, leading to
imaging condition (6).

We can check that the imaging condition 6 does not need
any division. Thus the instability problems do not occur.
This characteristic, along the fact that no one has given
importance of amplitudes information in the application
of seismic migration, made this imaging condition has
become the most used in practice.

Division by autocorrelation

Another imaging condition, addressed by Schleicher et al.
(2008), is given by

Rda(x) =

Nω

∑
j=1

PU (x,ω j)P
∗
D(x,ω j)

Nω

∑
j=1

PD(x,ω j)P
∗
D(x,ω j)

. (8)

This imaging condition is also known as illumination
compensation and can be interpreted as the result of a
least-squares inversion of the equation PU (x) = R(x)PD(x).
Moreover, it is roughly equivalent to imaging condition
(6). The reason is that in ray-theoretical approximation,
Nω

∑
j=1

PD(x,ω j)P
∗
D(x,ω j) ≈ A2

d , where Ad represents the

amplitude of PD. Thus, equation (8) is approximately
equivalent to

R(x) =
Nω

∑
j=1

PU (x,ω j)P
∗
D(x,ω j)

PD(x,ω j)P
∗
D(x,ω j)

≈
1

A2
d

Nω

∑
j=1

PU (x,ω j)P
∗
D(x,ω j).

(9)
Other slightly modified forms of imaging condition (8) were
also addressed by Schleicher et al. (2008). These are

Rad(x) =

Nω

∑
j=1

PU (x,ω j)P
∗
D(x,ω j)

Nω

∑
j=1

PD(x,ω j)P
∗
D(x,ω j)+ ε

(10)

where
ε = ε(z) =max{α ,λ max

x,y
(|D(x,ω)|)} (11)

with D(x,ω) denoting the denominator in equation (8) and
λ and α being parameters that keep ε from getting too
small, and

Ras(x) =

Nω

∑
j=1

PU (x,ω j)P
∗
D(x,ω j)

≪
Nω

∑
j=1

PD(x,ω j)P
∗
D(x,ω j)≫

, (12)

where

≪ Q(xi,yk,z,ω)≫ =
i+nx

∑
l=i−nx

k+ny

∑
m=k−ny

Q(xl ,ym,z,ω) (13)

represents the smoothing operator addressed in Guitton et
al. (2007), with nx and ny denoting the smoothing windows
sizes in the x and y directions, respectively.

Stabilized least squares

Unlike the imaging conditions discussed above, Vivas et
al. (2009) proposed an alternative least-squares imaging
condition that computes, for each source, frequency and
depth level, the average over the horizontal coordinates of
the downgoing wavefield. Wherever the downgoing energy
is below a certain threshold given by a fraction of this
mean value, it is replaced by the threshold value. The
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stabilized value of the denominator is then obtained by
a final sum over frequency and sources, for each spatial
position. Mathematically, in this formulation, we start with
the following imaging condition

Rls(x) =

∑
xs

Nω

∑
j=1

PU (xs,x,ω j)P
∗
D(xs,x,ω j)

∑
xs

Nω

∑
j=1

|PD(xs,x,ω j)|
2

. (14)

The average of the energy of the downgoing wavefield is
given by

|PD(xs,x,ω)|2av =
1

Nx

1

Ny
∑
x

∑
y

|PD(xs,x,y,z,ω)|2 (15)

where Nx e Ny are the number of points of the image in the
x and y directions.

Then, we replace the energy flux of the downgoing
wavefield in equation (14) by its stabilized value
|PD(xs,x,ω)|2st =







|PD(xs,x,ω)|2 if |PD(xs,x,ω)|2 > β |PD(xs,x,ω)|2av

β |PD(xs,x,ω)|2av if |PD(xs,x,ω)|2 ≤ β |PD(xs,x,ω)|2av,
(16)

with β an arbitrary positive constant, and we get the
stabilized least-squares imaging condition given by

Rsls(x) =

∑
xs

Nω

∑
j=1

PU (xs,x,ω j)P
∗
D(xs,x,ω j)

∑
xs

Nω

∑
j=1

|PD(xs,x,ω j)|
2
st

. (17)

The main difference to the previous imaging conditions lies
in the fact that the sum over all source positions is carried
out before the division of the wavefields. In the previous
imaging conditions, the sum over all sources is carried out
at the end, i.e., after the division of the wavefields.

Combining the stabilization ideas of the previous imaging
conditions with the one from the last condition (??), we
propose the alternative conditions

Rsd(x) =

∑
xs

Nω

∑
j=1

PU (xs,x,ω j)P
∗
D(xs,x,ω j)

∑
xs

Nω

∑
j=1

|PD(xs,x,ω j)|
2+ ε

, (18)

and

Rss(x) =

∑
xs

Nω

∑
j=1

PU (xs,x,ω j)P
∗
D(xs,x,ω j)

≪ ∑
xs

Nω

∑
j=1

|PD(xs,x,ω j)|
2 ≫

, (19)

where the additive constant ε and the smoothing
operator “≪ ≫” are given by equations (11) and (13),
respectively.

Numerical tests

To test the quality of the proposed imaging conditions, we
applied them to Marmousi data set by Versteeg (1994).
The migration used was Phase Shift Plus Interpolation
(PSPI) migration with ten reference velocities chosen
according to the maximum entropy criterion of Bagaini et
al. (1995). For simplicity, all numerical experiments were
carried out in two dimensions. In all cases, we used the
same migration technique and the true velocity distribution
of the Marmousi model, changing only the imaging
conditions. Thus all differences between the images below
depend exclusively on the imaging conditions used.

Crosscorrelation

Figure 1 shows the result of condition Rc. This imaging
condition is considered a benchmark, because it is the
most stable imaging condition known, and it is widely used
in practice. All other imaging conditions are not supposed
to degrade the image quality in comparison with this one.
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Figure 1: Marmousi data migrated using the
crosscorrelation imaging condition Rc (equation 6).

Division by autocorrelation

Figures 2 and 3 show the results of imaging conditions Rad

e Ras given by equations (10) and (12), respectively. For
the additive constant ε we used λ = 0.05 and α = 10−6

(equation 11). Although the overal quality of both images
is similar, imaging condition Ras is better in the upper part
of the image and Rad produces a clearer image in the lower
part. Some migration artifacts remain in both images. The
stronger ones can be observed in Figure 3.

Stabilized least squares

The image in Figures 4, 5, 6, and 7 show the results of
conditions Rls, Rsls, Rsd and Rss given by equations (14),
(17), (18) and (19), respectively. In equation (17) we used
β = 1 and in equation (18) we used ε = 10−6. As a first
advantage of these least-squares conditions, we note that
in both figures, the images extend much further into the
boundary zone than in Figures 2 and 3.

After a more detailed inspection of the image in Figure 4,
we see the presence of artifacts near the surface, a
problem solved by imaging condition Rsls (Figure 5).
However, these artifacts appear only in the boundary
region of the image, where the available data are
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Figure 2: Marmousi data migrated using the imaging
condition Rad (equation 10) with λ = 0.05 and α = 10−6.
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Figure 3: Marmousi data migrated using the imaging
condition Ras (equation 12) with window size nx = 100.
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Figure 4: Marmousi data migrated using the imaging
condition Rls (equation 14).

insufficient anyway. In both cases the artifacts persist to
a depth of about 1500 m. The amplitudes in Figuress 4
and 5 are visibly reduced as compared to Figures 2 and 3.

The fact that the least-squares and stabilized least-squares
imaging conditions (equations 14 and 17) have produced
good results with different artifacts being removed than in
the case of conditions (10) and (12) has motivated us to
combine the respective types of stabilization, hoping that
this combination can help to remove all observed migration
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Figure 5: Marmousi data migrated using the imaging
condition Rsls (equation 17) with β = 1 in equation 16.
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Figure 6: Marmousi data migrated using the imaging
condition Rsd (equation 18) with ε = 10−6.
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Figure 7: Marmousi data migrated using the imaging
condition Rss (equation 19).

artifacts. The results of the combined imaging conditions
(18) and (19) are shown in Figures 6 and 7.

Both imaging conditions Rsd e Rss (Figures 6 and 7) show a
considerable improvement over the imaging condition Rsls

(Figure 5). In the case of condition Rsd we can see a
clearer image in the upper part as compared to Rss. Overall,
very few migration artifacts are visible in both images,
but particularly so in Figures 6. We recognize that the
extension into the boundary zone achieved by conditions
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Rls and Rsls is also achieved by the present conditions. Note
also that the amplitudes in both images are less affected by
the stabilization than those in Figures 4 and 5 and closer to
those in Figures 2 and 3. Therefore we can conclude that
both new stabilization methods acted positively, creating
satisfactory results that combined the advantages of the
conditions discussed by Schleicher et al. (2008) and Vivas
et al. (2009).

The general observation from the overall comparison of
Figures 2 to 7 is that imaging condition Rsd (equation 18)
produced the best image (Figure 6) with the least migration
artifacts and the least affected migration amplitudes. Its
image quality comes very close to the one of the simple
crosscorrelation imaging condition Rc (Figure 1) of equation
(6).

Conclusions

When the amplitudes of a migrated image are to
be interpreted, the standard crosscorrelation imaging
condition of Claerbout (1971) cannot be used since it
destroys the amplitude information. This is particularly
important, if true-amplitude algorithms are used to correct
for geometrical-spreading effects in heterogeneous media.
Several techniques to preserve the meaning of migrated
amplitudes as proportional to the reflection coefficient at
the image point while avoiding problems with divisions
by near-zero values have been discussed in the recent
past (Valenciano and Biondi, 2003; Guitton et al., 2007;
Schleicher et al., 2008; Vivas et al., 2009). In this paper,
we have combined ideas of several of them to come up
with two new stabilization criteria for least-squares imaging
conditions. These stabilized least-squares imaging
conditions help to avoid instability problems in the migrated
image by summing over all sources before smoothing the
denominator or adding a given constant.

Tests on the Marmousi data indicated that the new
stabilized least-squares imaging conditions can help to
reduce migration artifacts. In our experiments, the new
conditions resulted in superior image quality as compared
to other recently proposed imaging conditions, both with
regard to migration artifacts and to migrated amplitudes.
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