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Abstract 

The Perfect Matched Layer (PML) method is presented 
and optimized. It is shown that the implemented 
optimization increases the effectiveness of the absorbing 
layer. Furthermore, PML’s effectiveness is analyzed with 
respect to its defining constants. Such analysis allows for 
faster tuning of PML to any given setup. Further results 
show that side effects are very sensitive to the number of 
grid points used in the absorbing layer, with better results 
found for wider layers. 

Introduction 

The appearance of fast processing computers and the 
continuous advances in numerical analysis have allowed 
new developments in acoustic wave modelling. Over 
recent years, many articles dealing with numerical 
simulations of wave propagation using finite difference, 
finite element and boundary integral methods have been 
published (Durran, 1999). 

A problem that has been widely discussed in papers is 
how to express the radiation condition mathematically at a 
boundary which is only at a finite distance from the 
energy source (Sommerfeld, 1949). The boundary 
condition should allow travelling disturbances to pass 
through the limits of the domain without generating 
spurious reflections that propagate back toward the 
interior, which may eventually override the original 
emitted seismic signals.  

A simple way to work out this problem is enlarging the 
computational domain, therefore delaying the backward 
reflections. This approach, though commonly used, 
requires large numerical meshes and, consequently, 
great CPU time. Berenger (1994) proposed the PML 
method for solving electromagnetic and elastic wave 
equations as a more efficient alternative. PML is based on 
designing a new matched medium intended to absorb - 
without reflection - the incident waves at any frequency 
and at any incidence angle.  

This work aims at performing effectiveness tests for an 
optimized PML method in a finite-difference time-domain 
(FDTD) scheme applied to acoustic wave modelling. The 
objectives are to generate data that will help fine-tune 
PML more efficiently, obtain high absorption rates with as 

narrow an absorbing layer as possible, and obtain an 
optimized version of PML. 

The PML method in its original form is presented and 
optimized so that wave reflection along the boundaries of 
the domain is reduced. It is shown that the implemented 
PML optimization increases the effectiveness of the 
absorbing layer. It is also shown that absorption is very 
sensitive to the number of nodes in the absorbing layer, 
and that wider layers yield better results. Furthermore, it 
is shown that PML’s ideal set of constants vary in a 
relatively predictable way that can be used to shorten the 
amount of time needed to tune PML to each setup. 

The Original PML Technique 

Berenger (1994) introduced PML as one of the ways to 
abate spurious reflections on the computational domain. 
A set of non-physical equations is applied along the 
boundaries of the domain so that the energy from the 
wave is abated at the boundaries rather than reflected 
back into the domain.  

If it were to be used on a continuous domain, PML would 
only require an infinitely narrow region along the 
boundaries to yield complete absorption. This is not true, 
however, for discrete domains such as the ones used in 
the finite difference method. In that case, such a region 
must be a given number of nodes wide, in which PML 
resembles other absorbing boundary methods such as 
the Damping Zone (Cerjan et al., 1985). 

The 2D continuity and linearized Euler equations take a 
different form in the absorption layers. Since the subject 
matter is acoustics (Whitham, 1999), they must be written 
as 
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where ρ, p and  are, respectively, the medium density, 
the acoustic pressure and the velocity vector; α is the 
attenuation coefficient; B (=ρc2) is the medium bulk 
modulus; c is the medium wave or, for acoustic waves in 
particular, sound-speed. 
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The attenuation coefficient α is the distinguishing feature 
between these equations and their non-PML 
counterparts. It is given by the expression, 
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where rPML is the maximum absorption rate and the 
exponent k is used to change the rate of absorption along 
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the absorbing layer. δt is the time step, nPML the number of 
nodes in the absorbing layer and i is an integer that 
indicates how far into the layer a given node is (1 ≤ i ≤ 
nPML). Thus, α ranges from 0 at the first node in the 
absorbing layer to ln(10)/Bδt at the boundaries of the 
domain. 

Equations (1) and (2) can be differentiated in time and 
space and combined to yield a single PML acoustic wave 
equation, 

pcpBBpp ttt
22222 ∇=++ αα .                                    (4) 

The Optimized PML 

The attenuation coefficient α is defined so that the 
maximum rate of absorption and the way absorption is 
inputed can both be changed. Therefore, PML can be 
tuned to the conditions that are being simulated in order 
to yield the best results for those conditions. 

The reason why PML must be tuned is because inputing 
absorption creates differences in acoustic impedance in 
the absorbing layer. That means that as a wave front 
enters the absorbing layer, it meets different media at 
each new node it reaches. Therefore, some reflection will 
happen within the absorbing layer, which is obviously 
undesirable. Consequently, extremely high absorption 
rates are undesirable, as represent strong discontinuities 
in the change in rate of absorption within the layer. As a 
result, tuning PML to each domain is the only way to 
make sure that the best compromise between absorption 
rate and reflection within the absorbing layer is achieved. 

Though α originally carries a polynomial function whose 
exponent is k, there is no limitation as to what kind of 
function is to be used to change the behaviour of the 
absorbing layer. Thus, α can be written in a generic form 
as 

( ) ( )[ ixfci PML=α ].                                                         (5) 

This allows for more flexibility and ease in working α to 
achieve the best possible results in terms of absorption. 
Throughout this paper, the value of cPML that yields the 
most absorption for a given setup will be referred to as 
“best cPML”. 

The need for impedance matching means that exponent k 
must be such that the difference in impedance is the 
smallest possible between each consecutive node in the 
absorbing layer. However, if k is such that too little 
absorption is imposed, the overall absorption will not be 
ideal, which would also happen if cPML were set too small. 

This leads to the logical conclusion that the wider the 
absorbing layer, the smaller cPML should be and the 
smoother the function defined by k. That way, there will 
be more room for absorption to happen, which makes it 
worth it to focus on avoiding large difference in 
impedance from node to node. Conversely, if the 
absorbing layer is narrow, a more aggressive setup will 
yield better results. 

Fig. 1 shows a set of possible functions for α. Functions 
are not, however, limited to the ones shown on the figure. 

 

 
Figure 1. A set of possible functions for α. 

Methodology 

Several different set ups were tested by changing α and 
the number of nodes in the absorbing layer. In all 
simulations, the same Ricker type source was placed at 
the center of the domain. A 2D, 10th order in space and 
2nd order in time finite difference scheme was used. The 
actual domain was a square with sides ranging from 50 to 
600 nodes long, while absorbing layers from 20 to 100 
nodes wide were used. In order to ensure numerical 
stability, the nodes were each 5 meters apart and the time 
step was set to 0.2 milliseconds. Wave speed was set to 
3000 m/s and the medium density to 1000 kg/m³. 

Naturally, a measure of energy is necessary to allow 
comparisons between each simulation; in this work, the 
sum of the squared amplitudes of all nodes in the 600-
node domain was taken on every time step (Fan and Liu, 
2000). Mathematically, 
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Another way of measuring energy can be obtained by 
summing the results from the first measure for every time 
step, 
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tyxUE )],,([ 2 .                                            (7) 

While the first approach only requires that the domains 
under comparison be identical in length and width, the 
second one imposes that they be identical in time span 
too. 

Relationship between cPML, domain size and the width 
of the absorbing layer 

Assessing the relationship between cPML, domain size and 
the width of the absorbing layer can be very time 
consuming, since several combinations of the variables in 
their respective ranges have to be simulated. However, 
such an analysis can be greatly simplified by introducing 
a dimensionless number, 

domaininnodesofnumber
layerabsorbinginnodesofnumberZ
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This approach allows for relevant information to be 
obtained with relatively fewer simulations. Furthermore, 
predictions about the ideal value of cPML for a larger 
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domain or absorbing layer can be estimated based on 
information obtained from a smaller counterpart, whose 
simulation is much less time-consuming. 

Thus, four different domains (50, 75, 100 and 150 nodes) 
were computed with three different values of Z (1/5, 2/5 
and 3/5). Conclusions could then be reached by 
comparing the twelve different results. The same 
exponent k (=2) was used for all the simulations. 

Results 

Fig. 2 shows the ideal value of PML for each combination 
of domain size (in nodes) and Z. There is a clear 
tendency towards smaller values of PML both as domains 
and Z increase, which should be expected from the 
theory. 

 

 
Figure 2. Best cPML for each domain size for k = 2. 

Since it is expected that the best cPML diminish as the 
number of nodes in the domain and/or the absorbing layer 
increase, the range of values that one needs to consider 
in searching for the best cPML can be reduced by 
analyzing smaller domains beforehand. This is an 
important consequence, because larger domains require 
considerably more time to simulate. 

Fig. 3 shows the computed total energy E for 101 ≤≤ k , 
where k is an integer; the attenuation coefficient α is given 
by expression (3). Note that for this case reflection is 
minimized as . Therefore absorption rates are also 
very sensitive to the polynomial function employed, at 
least for considerably large absorbing layers.  

4→k

 
Figure 3. Exponent k versus total energy E. 

As the number of PML nodes decreases, numerical 
results show that the polynomial function becomes less 
effective for reducing reflection since a transition zone no 

more exists. If that is the case, cPML becomes the most 
important PML optimization parameter. Thus Fig. 4 
compares time-domain seismograms computed with and 
without the optimized PML absorbing layer. It is clear from 
Fig. 4b the absorption rate achieved. 

 
(a)

(b) 

Figure 4. Time-domain seismograms computed (a) 
without and (b) with the optimized PML absorbing layer.  

Conclusions 

PML was optimized to reduce wave reflections at the 
borders of the FDTD-2D computational domain. It was 
found that optimizations increase the effectiveness of the 
absorbing layer. Results also show that side effects are 
very sensitive to the number of grid points used in the 
absorbing layer, with better results found for wider 
absorbing layers. The relationship between PML’s ideal 
constants and the sizes of the domain and of the 
absorbing layer was analyzed in order to allow faster 
optimization of PML; it was shown that the best cPML does, 
indeed, diminish as the absorbing layer and the domain 
increase in size. 
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