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Abstract

It is a fact that real geological media present variations
in density so due to stratigraphic or structural
geological formations as due to the pressure exerted
by the upper layers. This fact directly affects the
recorded amplitudes in seismograms. Taking into
account that the amplitudes are directly related to
several parameters such as the reflection coefficient,
porosity, etc, the correct representation of them is
fundamental for the correct evaluation of the seismic
attributes. In this context, the present work aims
to evaluate the differences in the synthetic seismic
amplitudes by comparing the wave field with and
without consideration of the density contrasts.

INTRODUCTION

Due to continuous and growing expansion of the oil
exploration horizons, the complex geological medium
become common in the industry. Additionally, nowadays,
the objective with the application of the seismic method
is not only the mapping of geometric structures as it
was early, but also the monitoring and characterization of
reservatories. In this sense, the seismic modelling can
therefore be divided into kinematic and dynamic, related
to travel times and amplitudes. In the first case, the interest
is only the geometric mapping of the reflects and, in the
second case, the interest is also in seismic attributes,
where the amplitudes play a key role.

Because of the growing complexity of the oil target, the use
of formulations based on the full wave equation acquires
central importance, not only for modelling but also for
seismic migration, as the case of Reverse Time Migration
(RTM). It is clear that the full wave equation, without any
approximation, is suitable for a realistic representation of
the wave field. However, the density gradient is often
neglected in acoustic modelling and RTM and this can
affect the amplitude results.

This paper aims to study how the amplitudes are
changed during the propagation of acoustic waves
due to the presence of density contrasts. To this
purpose, was evaluated the deviations in the propagated
waves amplitudes without taking into account the density
contrast, compared with propagation that takes into
account these contrasts. For this intent, were used
two distinct approaches. The first involves the analytical
study of simplified geological settings, to understand

qualitatively and quantitatively these deviations, both in
wave propagation in depth and in surface of the model
(synthetic seismogram). The second approach verifies
these deviations using finite difference numerical schemes
applied to a complex geological model.

The paper is divided as follows: in the first section,
equations describing the acoustic wave propagation are
discussed and, subsequently, the different numerical
formulations used to solve such equations are presented.
The following section undertakes the analytical study of
media composed by plane-parallel layers. Finally, two
examples are present: the first involves four models of
plane-parallel layers, in which numerical modelling are
compared with the respective analytical solutions; and
another involving the complex model known in literature as
Marmousi Model. In the last section, the conclusions are
presented.

ACOUSTIC WAVE PROPAGATION

The acoustic wave equation for general heterogeneous
media is given by

ρ~∇.

(
1
ρ

~∇p
)
− 1

c2
∂ 2 p
∂ t2 =−ρ f , (1)

where p is the acoustic pressure, f is the seismic source
and c =

√
κ/ρ is the speed propagation of wave in

the medium, being ρ the density and κ the adiabatic
compression modulus. For regions where the density
gradient is negligible, the Eq. (1) can be simplified to

∇
2 p− 1

c2
∂ 2 p
∂ t2 =−ρ f . (2)

A variant of Eq. (1) is the first order system given by

1
κ

∂ p
∂ t

+~∇.~v = f2

ρ
∂~v
∂ t

+~∇p = 0, (3)

where~v is the velocity vector of particles of the medium.

NUMERICAL FORMULATIONS

All numerical formulations implemented are based on the
Finite Difference Method (FDM) in two-dimensional media,
using the fourth order in space and the second order
in time. It is remarkable that the formulation based on
Eq. (2) will be referred to as homogeneous formulation (ρ
constant) and those based on Eq. (1) and (3) are called
heterogeneous (ρ variable), the latter also referred to as
staggered.

Homogeneous Formulation

The first scheme implemented is widely known and used
in geophysics, being the Eq. (2) discretized using the
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where the index i refers to the spatial coordinates and the
index k, to the time coordinate; h is the grid spacing and ∆t,
the time interval. Then, the scheme is obtained, replacing
the Eq. (4) and (5) in Eq. (2) and expliciting p at time k+1
depending on the pressure field in earlier times.

Heterogeneous formulation

To discretize the Eq. (1), we use the scheme developed
by Cohen and Joly (1996) in which the time derivative is
approximated by Eq. (5) and the spatial derivatives, by
fourth-order expressions given by[
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where κ and b = 1/ρ are the properties of heterogeneous
media and must be calculated through

κi =
1

2h

∫ xi+1

xi−1

κ(x)dx e bi+ 1
2
=

1
h

∫ xi+1

xi

b(x)dx , (7)

being the properties b
λi+ 1

2

i+ 1
2

calculated using the average and

the optimal parameter λ suggested in the cited article.

Staggered heterogeneous formulation

To discretize the system given by Eq. (3), it is applied a
simplification of the Virieux (1986) formulation for the case
of acoustics. Then, we use the following approximations
for the spatial and temporal derivatives applied to p or ~v
components, in fourth order in space and second order in
time: (

∂h
∂ t

)k

i
=

hk+1/2
i −hk−1/2

i
∆t

, (8)

(
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i+3/2 +27hk
i+1/2−27hk

i−1/2 +hk
i−3/2

24h
. (9)

PLANE PARALLEL LAYERS MEDIUM

By Snell’s Law, the ray path in a complex medium only
depends on velocity field of propagation in this medium.
Therefore, it is clear that the density contrasts only
influence the amplitudes, not changing the path of the
wave. Knowing the values of transmission and reflection
coefficients along the paths of the rays, which represent
each wavefront, with or without considering the gradient
of density, one can calculate the ratios between the
amplitudes in these cases.

Then, consider a model with n plane-parallel horizontal
layers, each with properties given by vi and ρi with i =
1,2, . . . ,n. In this model, first is applied a plane wave which
moves in the z direction downward (Fig. 1-a), that is, with
the horizontal wavefront.

Defining the following ratios between adjacent properties

αi =
ρi

ρi+1
e βi =

vi

vi+1
, (10)

the coefficients Ri of reflection and Ti of transmission, for
each interface i, can be written as

Ri =
aR

aI =
Zi+1−Zi

Zi +Zi+1
=

1−αiβi

1+αiβi
(11)

Ti =
aT

aI =
2Zi+1

Zi +Zi+1
=

2
1+αiβi

, (12)

where Zi = ρivi is the acoustic impedance of the
layer i, and aI , aR e aT are the amplitudes of the
reflected and transmitted incident (downward) waves,
respectively. By Equation (11), we can calculate the
accumulated transmission coefficient Ai, corresponding to
the propagation between the layer 1 and layer i, as

Ai = 2
i−1

∏
j=1

1
1+α jβ j

. (13)

This Ai factor corresponds to the ratio between the
amplitude that reaches to the layer i and original amplitude
(in the layer 1). Likewise, can be obtained an equation
that expresses the accumulated transmission coefficient
accumulated by upward wave, of the layer n to the first
layer. Multiplying then by the accumulated transmission
coefficients of the downward wave (until the layer i), by
the reflection coefficient on the interface i and by the
accumulated transmission coefficients of the upward wave,
the following coefficient can be obtained

Bi = 4
(

1−αiβi

1+αiβi

) i−1

∏
j=1

α jβ j

(1+α jβ j)2 . (14)

The coefficient Bi gives the ratio of the original amplitude
(source) by the value of the amplitude of the wave that
returns to the first layer, after it has been reflected at layer i.

The accumulated amplitude deviation caused by
disregarding the density variations, respectively, for
the downward wave at the layer i and for the upward wave
returned to surface, are the rA

i and rB
i coefficients given by

rA
i =

Aρ cte
i

Aρ var
i

=
i−1

∏
j=1

1+α jβ j

1+β j
(15)

rB
i =

Bρ cte
i

Bρ var
i

=
(1+αiβi)

(1+βi)

(1−βi)

(1−αiβi)

i−1

∏
j=1

(1+α jβ j)
2

α j(1+β j)2 , (16)

where (Aρ cte
i ,Aρ var

i ) and (Bρ cte
i ,Bρ var

i ) are given by
Eq. (13) and (14), respectively, considering the density
constant or not. The term outside the productory, in
Eq. (16), is the error rR

i = Rρ cte
i /Rρ var

i caused by reflection.

Now, consider the oblique incidence of a plane wave in the
model of layers (Fig. 1-b). Considering an interface i, the
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Figure 1: Plane-parallel layers model. In (a), it is showed a situation with perpendicular incidence and, in (b), with oblique
incidence. Here, are showed the ray paths that descends and ascends and the Ai, Bi and Ri receptor positions, indicating where
are measured the coefficients of the same name (see text). In addition, in (b) are showed the θi incidence and transmission
angles (index I and T ), for both downward (θi) and upward (θ̂i) rays.

generalizations for the reflection (R̄i) and transmission (T̄i)
coefficients are given by

R̄i =
Zi+1 cosθ I

i −Zi cosθ T
i+1

Zi+1 cosθ I
i +Zi cosθ T

i+1
=

1−αiβiγi

1+αiβiγi
(17)

T̄i =
2Zi+1 cosθ I

i
Zi+1 cosθ I

i +Zi cosθ T
i+1

=
2

1+αiβiγi
, (18)

where γi = cosθ T
i+1/cosθ I

i , being θ I
i and θ T

i+1 the angles of
incidence and transmission. By the Snell’s Law they are
related by

θ
T
i+1 = arcsen

(
sen θ

I
i /βi

)
. (19)

It is important to note that in the case of plane-parallel
layers θ I

i = θ T
i , θ̂ I

i = θ T
i and θ̂ T

i = θ I
i ∀ i (see Fig. 1-

b). Additionally, it should be remembered that when the
incidence angle θ I

i is equal to or greater that the limit angle
θ IL

i = arcsen(βi), there will be total reflection, not emerging
transmitted wave in the layer i+1.

With that, from Equation (17) and (18), can be obtained the
following generalization of Eq. (15) and (16):

r̄A
i =

Āρ cte
i

Āρ var
i

=
i−1

∏
j=1

1+α jβ jγ j

1+β jγ j
(20)

r̄B
i =

B̄ρ cte
i

B̄ρ var
i

=
(1+αiβiγi)(1−βiγi)

(1+βiγi)(1−αiβiγi)

i−1

∏
j=1

(1+α jβ jγ j)
2

α j(1+β jγ j)2 , (21)

Like the Eq. (15) and (16), the Eq. (20) and (21) are also
valid for punctual sources applied to model layer plane-
parallel, since the decaiment factor of the amplitude due to

the spherical spreading of the wavefront is the same with
or without considering the density contrast.

Analysis of the analytical expressions

Next, the analytical values of the r̄A
i coefficients (in depth)

and r̄B coefficients (on the surface) have been evaluated,
as explained above, for the four models of 15 layers
(Tab. 1). The contrasts of density and velocity models

Table 1: Properties of the layers models (in SI units).
l model 1 model 2 model 3 model 4

ρ v ρ v ρ v ρ v
1 1000 1500 1000 1500 1750 1600 1750 1600
2 1800 1800 1800 1800 1800 1800 1800 1800
3 1850 2000 1900 2200 1850 2000 1900 2200
4 1900 2200 1850 2000 1900 2200 1850 2000
5 1950 2400 1950 2400 1950 2400 1950 2400
6 2000 2600 2050 2800 2000 2600 2050 2800
7 2050 2800 2000 2600 2050 2800 2000 2600
8 2100 3000 2100 3000 2100 3000 2100 3000
9 2150 3200 2200 3400 2150 3200 2200 3400

10 2200 3400 2150 3200 2200 3400 2150 3200
11 2250 3600 2250 3600 2250 3600 2250 3600
12 2300 3800 2350 4000 2300 3800 2350 4000
13 2350 4000 2300 3800 2350 4000 2300 3800
14 2400 4200 2400 4200 2400 4200 2400 4200
15 2450 4400 2450 4400 2450 4400 2450 4400

are typical of geophysical media, where models 1 and
2 are offshore models and models 3 and 4 are onshore
models. In the models 2 and 4 there is change in position
of adjacent layers.

The analytical r̄A
i and r̄B

i coefficients, respectively, in the
depth and at surface in function of layer i and of the angle
of incidence in the first interface are shown in Fig. 2
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(offshore models) and 3 (onshore models). In both cases,
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Figure 2: Coefficients r̄A
i of models 1 and 2 (m1 and m2)

per interface. Each curve shows the variation r̄A
i along the i

layers for different angles of incidence at the first interface,
in degrees (m1(θ I

1)).
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Figure 3: Coefficients r̄A
i of models 3 e 4 (m3 and m4) per

interface, following the Fig. 2.

the error increases as more density contrasts are crossed,
so it increases with depth. Typically, for models 1 and 2
(offshore) the amplitude error is 20 % in the first interface,
increasing linearly layer by layer. For the models 3 and 4
(onshore), it is remarkable that these differences become
more significant for the deepest layers (around 15 %). It is
emphasized that in both onshore and offshore cases, there
is little dependence of these errors on the incidence angle.

The errors r̄B
i at the seismograms (Fig. 4 and 5) have

higher complexity, showing great dependence on the
incidence angle and seems to be quite different for the
several possible situations. To a better understanding of
these errors, it is convenient to separate the trajectory of
the wave into two parts and evaluate the errors apart, as
done below.

1) Downward + upward refraction: This source of error is
due to combination of transmission errors in the downward
ray (r̄A

i ) with the upward ray. For the onshore models,
such errors are very small (assuming that are crossed the
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Figure 4: Coefficients r̄B
i of models 1 e 2 (m1 and m2) per

interface, following the Fig. 2.
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Figure 5: Coefficients r̄B
i of models 3 e 4 (m3 and m4) per

interface, following the Fig. 2.

same layers, with symmetrical angles, in the downward
and upward wave, as occurs in plane-parallel layers).
This happens because of a compensation of errors r̄A

i
discussed above with corresponding errors of the upward
wave. For offshore media, where the wave travel through
a large density contrast (water-sediment), such errors
are significantly great, substantially contributing to total
error. It is important to mention that, just like the error
r̄A

i (downward), this error poorly depends on angle of
incidence.

2) Reflection on interface i: The second source of errors
if only due to the reflection layer i, and this relative
error strongly dependents on the angle (as shown in Fig.
6). Such error make the amplitude of the wave, with
regarding of the density contrast increases in relation
to wave propagated without regarding this contrast (the
coefficient r̄R

i is less than one). As the angle of incidence
(at the first interface) grows, approaching the critical angle
at a given layer i, the error tends to decrease, becoming
null for angles with values greater than or equal to the
critical angle (r̄R

i becomes one). Logically, in model 2,
where inversion layer exists, there is no total reflection on
corresponding interfaces, so that the error decreases more
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Figure 6: Coefficients r̄R
i for each model j (m j at labels),

shown for some i (Ii) interface, depending on the angle of
incidence. The coefficient is defined as r̄R

i = Rρ cte
i /Rρ var

i .

slowly.

Bearing in mind these two sources of error, consider now
the total error r̄B

i on the seismograms. In offshore models,
first considering small angles of incidence in the first
interface, the error tends to be smaller than the error before
reflection (r̄A

i correspondent), since the two sources of error
work in opposite directions. As the angle increases and the
error due to reflection decreases, the two sources of error
do not tend to be compensated anymore (r̄B

i > 1). In the
onshore case, as the angle angle approaches the critical
value in a given layer, the second source of error tends
to decrease, making the total error decrease, reaching a
minimum value for the maximum angle.

NUMERICAL MODELLING

Now, the numerical modelling are presented. At first, plane
waves in layered models are modelled, being compared
with the analytical results and, in the sequence, the
Marmousi offshore model is considered.

Models of Layers

The first model used is formed by five horizontal layers,
being the properties of the layers given by v1 = 1550, ρ1 =
1000, v2 = 1800, ρ2 = 1800, v3 = 2100, ρ3 = 1900, v4 = 2400,
ρ4 = 2000, v5 = 2800, ρ5 = 2100 (SI units), with the layers
interfaces at depths z1 = 400, z2 = 510, z3 = 580, z4 = 700 (in
grid points). The numerical parameters used for modelling
were: grid interval of h = 5m, time interval ∆t = 2.5×10−4 s.
The plane wave was generated using the pulse given by
the second derivative of Gaussian, characterized by cutoff
frequency fc = 60 Hz, applied in the depth zi = 370.

The pressure field was measured along the time in
each layer. From the modelled amplitudes, were
calculated coefficients of reflection and transmission for
each interface. In Figure 7, the seismogram generated
(recorded at surface) is shown. The first event of this
seismogram corresponds to the direct wave and the others
records come from the reflections at the four interfaces.
The amplitude of the direct wave is the same for different
schemes, since the wave travels only in a homogeneous
medium until be registered. The amplitude of the first wave
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Figure 7: Synthetic seismograms at z = 380.

reflected is significantly larger for the modelling with the
dynamical schemes, since the density contrast in the first
interface is the largest of all. In the other reflections, the
difference decreases considerably.

The Table 2 presents the reflection and transmission
coefficients obtained directly from the modelled amplitudes
above and below of each interface, for the different
numerical formulations, together with corresponding
theoretical parameters calculated considering or not the
density. The results show an excellent agreement between
the theoretical and numerical coefficients obtained with the
FDM numerical modelling, showing that the implemented
schemes are suitable to represent amplitudes consistently.

Table 3: Coefficients Bi and errors. In columns 2-4,
this coefficients for the different numerical modelling are
shown. The two columns following show the theoretical
coefficients with and without consideration of density and
in the last three columns, the relative percentual errors in
this coefficients with respect to their theoretical coefficients
can be seen.

i Bi numerical Bi theoretical relative % error
hom het stg hom het hom het stg

1 0.093 0.356 0.364 0.091 0.367 -1.8 3.1 0.8
2 0.076 0.089 0.089 0.077 0.090 1.9 1.1 0.6
3 0.065 0.078 0.078 0.066 0.079 1.2 1.6 1.2
4 0.074 0.084 0.085 0.075 0.086 1.8 1.8 1.5

In Table 3, the coefficients Bi are presented, calculated
from the modelled amplitudes. These coefficients are
compared with theoretical coefficients Bi calculated. The
results show good agreement with the theoretical values,
although, due to the fact that they are accumulated
coefficients, they have larger numerical errors than that
obtained in a single layer. Logically, decreasing the grid
space and the time step, these errors tend to minimize.
In addition, the staggered grid has the smallest numerical
error and the other two schemes have equivalent error.

Marmousi 2 Model

In this example, it’s used a sampled model of the offshore
Marmousi model, being the grid sizes given by Nx×Nz =
634× 334, with h = 5 m. (Fig. 8). Therefore, the model
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Table 2: Coefficients of reflection and transmission by layer. The second and third columns shows the reflection coefficient Rhom
i

and transmission coefficient T hom
i for modelling with the homogeneous formulation. In the following columns are presented,

respectively, the coefficients for heterogeneous schemes, staggered, and finally, theoretical.
i Rhom

i T hom
i Rhet

i T het
i Rstag

i T stag
i Rhom

i(theo) T hom
i(theo) Rhet

i(theo) T het
i(theo)

1 0.093 1.082 0.356 1.361 0.364 1.359 0.091 1.091 0.367 1.367
2 0.078 1.072 0.103 1.099 0.104 1.099 0.077 1.077 0.104 1.104
3 0.067 1.065 0.092 1.090 0.093 1.091 0.067 1.067 0.092 1.092
4 0.077 1.076 0.101 1.100 0.102 1.101 0.077 1.077 0.101 1.101

Figure 8: Marmousi 2 model. (a) Velocity vp and (b) density (SI units). The source and hydrophones positions are showed.

has the total size of 3165 m×1665 m. The cutoff frequency
of the seismic source used was fc = 60 Hz and the time
step ∆t = 2.5× 10−4 s. The source was located at position
xi = 317 e zi = 40 of the grid and wave fields were evaluated
at points Pi j = (xi,z j) of the depth z1 = 160 and z2 = 300 for
the offset given by x1 = 160, x2 = 317 and x3 = 470.

In Fig. 9, it is shown the variation of the wave field

homogeneous

heterogeneous
staggered

time

Figure 9: Amplitude of the wave at the point P31.

along the time at the point P31 for different operators.In
Table 4, the numerical coefficients r̄Ai between the
homogeneous scheme and each one of the others two
heterogeneous schemes as well as the ratio between them
(note that this latter expresses only the errors between the
heterogeneous formulations). It is observed that, despite
having a complex behavior (as expected), the errors vary
between 20 % and 30 %.

CONCLUSIONS

Although simplified, the analytical study of the layers
models allowed a better understanding of how the density
gradient influences the wave amplitudes, for both onshore
and offshore models. The numerical examples presented

Table 4: The rA coefficients at each Pi j point (see text).

coeff P11 P21 P31 P12 P22 P32
rA(het) 0.711 0.690 0.731 0.744 0.797 0.721
rA(stg) 0.714 0.694 0.731 0.747 0.803 0.725

rA (het/stg) 0.996 0.995 1.000 0.996 0.992 0.994

shown that the FDM schemes implement have provided a
reliable amplitude representation for the three approaches.

For the case of complex models, such as Marmousi
model, the path of the downward wavefront can be very
different from the path of the upward wavefront, so that the
transmission errors (downward + upward) have a complex
behavior that can vary over the model. Finally, even with
all the complexity of real models, we can safely say that
the errors in seismic records show significant values, which
may exceed 30% in amplitude in depth.
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