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Abstract

In this paper, we discuss an algorithm to decompose
converted shear waves seismic data into angle
gathers. This work is an extension to the work
published by Sava and Vlad (2010), which presents an
equivalent method for pure compressional waves. This
method can be applied using a variety of solutions for
the wave-equation and wave extrapolation, e.g. finite-
difference, kirchhoff, and frequency-domain solutions.
However, the power of this method is due to its
applicability with finite-difference solution for the
wave-equation and a consistent imaging condition.
Hence, this method is able to deal with issues due to
complex geology and fits perfectly the RTM migration.

Introduction

In regions characterized by complex subsurface structure,
wave-equation depth migration is a powerful tool for
accurately imaging the earths interior. The quality of
the final image greatly depends on the quality of the
velocity model and on the quality of the technique used
for wavefield reconstruction in the subsurface (Gray et
al., 2001). However, structural imaging is not the
only objective of wave-equation imaging. It is often
desirable to construct images depicting reflectivity as a
function of reflection angles. Such images not only
highlight the subsurface illumination patterns, but could
potentially be used for image postprocessing for amplitude
variation with angle analysis. Furthermore, angle domain
images can be used for tomographic velocity updates.
Decomposition of migrated images into angle and azimuth
components is useful for several purposes, for example
for illumination studies or AVAZ analysis. An algorithm
for angle decomposition of pure acoustic waves using
extended imaging condition has been recently presented
by Sava and Vlad (2010). Here we show what changes
have to be introduced in the algorithm so that the angle
decomposition can be applied for converted waves. Our
algorithm uses seismic wavefields reconstructed with the
complete wave equation, thus it inherits all attributes of this
methodology for imaging complex geologic structures. We
use conventional modifications of wave-equation migration
algorithms, for example by using different velocities for
the the source and receiver wavefields, i.e. P-wave
velocity for the source and S-wave velocity for the

receiver wavefields. The angle decomposition is based
on extended common image-point gathers. Such gathers
are advantageous for wave-equation migration because
they can be constructed at sparse locations in the image,
thus reducing computational cost. Moreover, the common
image point gathers are not biased toward the vertical
direction, as is the case for conventional common-image-
gathers, and they also avoid calculations in areas that are
not useful for velocity analysis. These advantages are
discussed in details by Sava and Vasconcelos (2011).

Extended Imaging Condition

The extended imaging condition differs from the con-
ventional imaging condition in that it is a correlation
between the source and receiver wavefields shifted in the
space and in the time directions (Claerbout, 1971 and Sava
and Vasconcelos, 2011).

R(~x, t,~λ ,τ) = ∑
t

Ws(~x−~λ , t + τ)Wr(~x+~λ , t − τ) (1)

The equations defining the spatial extent of the incident and
reflected wavefronts at a time t, considering the origin at
(xs, ts) and (xr, tr), are:

n̂s · (~x−~xs) = vs(t − ts) (2)

n̂r · (~x−~xr) = vr(t − tr) (3)

The variables with index s are related to the source
wavefield, and variables with index r are related to the
receiver wavefield. If symmetrical space shifts (−λ and
+λ ) are applied to each of these wavefronts, then a shift in
time τ is necessary to bring them to a position where once
again they cross the original point of reflection (Sava and
Vlad, 2010). The relation between the spatial and temporal
shifts are given by the equations

n̂s · (~x−~xs −~λ ) = vs(t − ts − τ) (4)

n̂r · (~x−~xr +~λ ) = vr(t − tr + τ) (5)

We can use equation 2 in equation 4 and equation 3 in
equation 5 to cancel out the spatial and temporal variables,
so that we end up with an expression which depends only
with the lag variables:

n̂s ·~λ = vsτ (6)

n̂r ·~λ = vrτ (7)
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The Moveout Equation

From equations 6 and 7 we want to extract one equation
that defines a surface on the (λ ,τ) domain. This surface
must depend on vs , vr , the reflector’s normal n̂, the azimuth
of reflection φ , and the angles of incidence θs and reflection
θr. In order to find the dependence on n̂, θs and φ , we have
to understand the relation between these variables and ns
and nr (figure 1):

n̂s = (n̂s · q̂) q̂+(n̂s · n̂) n̂ (8)

n̂s = sinθs q̂− cosθs n̂ (9)

n̂r = (n̂r · q̂) q̂+(n̂r · n̂) n̂ (10)

n̂r = sinθr q̂+ cosθr n̂ (11)

Therefore, equations 6 and 7 become:

sinθs (q̂ ·~λ )− cosθs (n̂ ·~λ ) = vsτ (12)

sinθr (q̂ ·~λ )+ cosθr (n̂ ·~λ ) = vrτ (13)

Substituting (q̂ ·~λ ) from equation 12 in equation 13, we
obtain

sin(θs +θr)(n̂ ·~λ ) = (vr sinθs − vs sinθr), (14)

therefore

n̂ ·~λ =
(vr sinθs − vs sinθr)

sin(θs +θr)
=

(vr sinθs − vs sinθr)

sinθs cosθs + sinθr cosθr
(15)

Using Snell’s law given by

sinθr =
vr

vs
sinθs and cosθr =

√
1− (

vr

vs
sinθs) (16)

we reach the result

n̂ ·~λ =
(vr − vs)

cosθr +
vr
vs

cosθs
(17)

The only possible values for the angle of incidence are in
the range between 0o and 90o . The angle of the reflected
S-wave has to be smaller than 90o and bigger than 0o. In
this case, the denominator of equation 17 is always bigger
than zero, so that we can write:

n̂ ·~λ = 0 (18)

The result expressed by equation 18 is that only shifts
parallel to the reflecting plane contribute in the extended
imaging condition (equation 1). Now we can derive the
moveout equation by replacing (n̂ ·~λ ) in equation 13 from
equation 12:

sin(θs +θr)(q̂ ·~λ ) = (vr cosθs + vs cosθr) τ (19)

Using the definitions

θ ≡ θs +θr

2
and θ ≡ θs −θr

2
(20)

in the moveout equation 19, we obtain the moveout
equation in terms of θ and δ :

sin(2θ) (q̂ ·~λ ) = [(vr cos(θ +δ )+ vs cos(θ −δ )] τ (21)

Quantities δ and θ are related by Snell’s law:

tanδ = tanθ

[
1− γ

1+ γ

]
γ ≡ vr

vs
(22)

Instead of θ and δ , we can also derive the moveout
equation for θs and θr separately. From equation 19 we
have:

(sinθs cosθr + sinθr cosθs) (q̂ ·~λ ) = (vr cosθs + vs cosθr) τ

(23)

Considering equation 16 and defining the coefficients

βs ≡
vr

vs
+

√
1−
(

vr
vs

sinθs

)
cosθs

(24)

βr ≡
vs

vr
+

√
1−
(

vs
vr

sinθr

)
cosθr

(25)

we obtain the moveout equations for θs and θr

βs sinθs (q̂ ·~λ ) = βsvsτ (26)

βr sinθr (q̂ ·~λ ) = βrvrτ (27)

Cancelling out βs and βr on both sides we get moveout
equation with the same form of that for PP waves presented
by Sava and Vlad (2010):

sinθs (q̂ ·~λ ) = vsτ (28)

sinθr (q̂ ·~λ ) = vrτ (29)

Angle-azimuth decomposition for converted waves

The algorithm for decomposing converted waves into
azimuth and angle of reflection is similar to that of acoustic
waves presented by Sava and Vlad, 2010. The only
differences are that, instead of one, two velocities must
be used in the computation, vs and vr , and also the
decomposition can be done in relation to three types of
angle: θ , θs , or θr.

Synthetic example

We test the algorithm with a simple synthetic model. The
model has homogenous velocity with the shear velocity
being half of the acoustic velocity. The density is a step
function, so that there is one single horizontal reflector in
the model at the depth 1.0. Note that no spatial units
are needed here, since we are dealing with angles, only
relative coordinates matter.

This modeling considers a source of P-waves located at
a point with coordinates Sx = 4.0, Sy = 4.0, Sz = 0.0.
The isotropic elastic wave equation is used to propagate
the waves generated by the source through a finite-
difference algorithm. The results below show an analysis
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Figure 1: Geometry used in the derivation of the move-
out function. The unit vector n̂ defines the reflecting plane
and is orthogonal to it. The unit vector q̂ is parallel to the
reflecting plane and defines the azimuth of reflection. The
unit vectors n̂s and n̂r are orthogonal to the wave fronts of
the source and receiver wavefields, respectively.

of the reflections at the CIP (common image point) with
coordinates CIPx = 3.2, CIPy = 3.2, CIPz = 1.0 (Figures
2 and 3). Note that although here we have used here the
isotropic elastic wave equation, any approximation of the
wave equation is suitable for this algorithm.

The incident wave gives rise to two reflected waves, an
acoustic and a shear waves. As the reflector is a horizontal
surface, both waves must propagate in the same azimuthal
direction. However, the angle of reflection of the acoustic
wave is bigger than that of the shear waves. Figures 4 and
5 show the the images (migrated sections in space domain)
for the PP and the PS experiments. Notice that the image
obtained from PS waves presents polarity reversal.

Figures 6 and 7 illustrate CIP gathers for PP and PS
reflections. The decomposition of the CIP gather in angles
of reflection results in the angle-azimuth maps shown by
Figures 8 and 9. Figures 8 and 9 show the azimuth
of the reflection and the average between incidence and
reflection angles for the PP and PS cases, respectively.

The azimuth of a point in these maps is represented by
the azimuth of the line connecting this point to the center
of the map. The average angle is represented by the
distance from this point to the center of the map. The region
between two consecutive circles spams a range of 15o .
Note that both PP and PS reflections occur at the same
azimuth, but the PS wave has smaller angle of reflection.

Analytical computations predict θps = 22.0o and θpp = 48.5o,
where θps and θpp are the average between incidence
and reflection angles for PP and PS cases. The results
observed in Figures 8 and 9 are in accordance with
this prediction. On the angle-azimuth maps events
associated with PP and PS reflections are fuzzy due to
the bandlimited character of the waves propagated in this
synthetic experiment. The predicted angles fall in the fuzzy
region of each corresponding event.

Figure 2: Vertical cross-section showing locations of the
source point and of the CIP. Units are not provided since
we are dealing with relative coordinates.

Figure 3: Map showing locations of the source point and of
the CIP. Units are not provided since we are dealing with
relative coordinates.

Conclusions

We present an algorithm for decomposing CIPs obtained
by wave-equation migration of converted waves into
reflection and azimuth angles. The method is similar to that
of purely acoustic waves. In the PS algorithm, the moveout
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Figure 4: Image in the space-domain constructed from PP-
waves.

Figure 5: Image in the space-domain constructed from PS-
waves.

equation distinguishes between the velocity of source
wavefield and the velocity of the receiver wavefield. This
algorithm is suitable to any method of wave propagation,
the only requirement is that the source and receiver
wavefields must be known at all times, which is common for
reverse-time migration algorithms. The algorithm is robust
and efficient and potentially allows for illumination studies
and AVA analysis of converted waves.
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Figure 6: CIP gathers for PP-waves.

Figure 7: CIP gathers for PS-waves.

Figure 8: Angle-azimuth diagrams of the CIPs for PP-
waves.

Figure 9: Angle-azimuth diagrams of the CIPs for PS-
waves. An artifact is present on the top right of the diagram.
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