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Abstract  

In these work we explore the response to noise of a 
simple model critically auto-organized (the Bak-Sneppen 
SOC model) with the aim of learning the ways in which it 
is most effectively obtained a degradation of power-laws 
in distribution functions of event sizes. The basic model 
which essentially consists in a set of random barriers, that 
in this paper will be considered an abstract entity 
(although a pointer to earthquake is clear), systematically 
removes those barriers with higher absolute values, and 
theirs neighbors. At the stationary state avalanches of all 
sizes are observed. We have introduced two types of 
noise in simulations, a local one (just systematically and 
randomly changing a few barriers with a given frequency) 
and a global one (by slightly changing the values of all the 
barriers with a certain frequency). It is the aim of this work 
the search for methods allowing to trigger catastrophic 
events before the accumulated energy becomes enough 
to represent a challenge. We have obtained degradations 
of power-laws of several degrees. The possible 
connections of our simulations with real systems as well 
as the way in which an actual degradation of power-laws 
could be obtained are discussed at the end of the work. 
Future directions of research are also depicted. 

 

Introduction 

It is well-known the existence of many natural systems 
driven by stationary states characterized by self 
organized criticality (SOC). Contrary to what happens in 
the so-called normal systems, where exponential laws are 
the usual distributions for events sizes, in systems that 
present SOC the distributions for event sizes are 
described by power-laws [1-3]. This is the case, for 
example, for earthquakes, solar flares and magnetic 
storms. From the physics point of view, the presence of 
power-laws implies the possibility of the occurrence of 
large events with probability essentially different from 
zero. The consequences of these large events (for 
instance, in the earthquake case) can be catastrophic. 
Large efforts have been devoted to develop forecasting 
techniques for these catastrophic events. However, they 
are far of being considered successful and, at best, they 
predict the occurrence of large events in a probabilistic 
way which prevents the application of protective actions 
(by transferring populations at each alert, for example). 

Thus, it would be interesting to study the ways in which 
these power laws can be destroyed in such a way that 
catastrophic events never reach the threaten level for the 
human kind. On the other hand, the existence of power 
laws seems to be related to healthy states of the brain, for 
example, so, the inverse problem of finding ways to 
construct power laws from arbitrary distribution functions 
is also a challenging problem. We will concentrate in this 
letter in the first problem: the best way to destroy power 
laws or, in other words, to trigger catastrophic events 
harmless to human life.  

This works, then, involves the proposal of triggering 
catastrophic events but in such a way that larger events 
are avoided by frequently starting small events. 

The triggering of earthquakes is a long standing matter 
and has been studied from several points of view: by the 
triggering and synchronization of stick slips [4], through 
the cumulative Benioff strain-release [5], through the 
study of spatial and temporal distributions of earthquakes 
[6-9], through aftershocks series [10] and many others 
that include from meteorological to tide triggered 
earthquakes [11-19]. In the northern part of Brazil have 
been reported earthquakes supposedly triggered by wells 
and artificial lakes.  

While all the previous works studied the possible natural 
ways of triggering earthquakes, the present work is the 
first attempt (to the best of our knowledge) to propose 
men voluntary actions of doing so.  

The rest of the paper is organized as follows: first, we 
briefly present the model (it is the subject of many 
previous scientific publications and we will not extend to 
much on this point), later on we present the methods 
used to introduce noises and to study some dynamical 
characteristics of the model, followed by an exposition of 
our results and a discussion. Finally, we present our 
conclusions and some possible trends for future works.   

 

The Model 

We have simulated systems composed by connected 
elements that can accumulate energy coming from 
arbitrary sources. Once the energy in any of the elements 
has reached a given threshold, the element releases an 
arbitrary portion of its energy to the neighbors or out of 
the system. Some of the neighbors can eventually reach 
the threshold with this income and, consequently, release 
part of its energy to the neighbors or out of the system. In 
this way a single element can start a chain reaction 
(avalanche) that will stop only when all the elements 
present energies below the threshold. This is essentially a 
Bak-Sneppen (BS) model. The BS model is probably the 
simplest SOC model and was originally introduced to 
explain catastrophic mass extinctions during the Earth’s 
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history. It has found applications in several other research 
fields (evolution, the brain, and many others). Depending 
on the particular problem the model models, its 
parameters represent different physical quantities. 
However, even if we are essentially thinking in 
earthquakes, we will present it in a very general and 
abstract fashion and let particular applications for the 
future. 
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Figure 1.- Distribution of nodes values at the stationary 
state (black triangles) without noise. We present also the 
distribution for some type 1 noise levels (see inset).  

The updating algorithm is composed by two relative 
simple steps: first, to detect the larger node of the system, 
and second, to substitute it by a new random value as 
well as the values of the neighbors. After many (106 to 
108) updating steps the systems reach a stationary state 
characterized by a step-like distribution for the nodes 
values and a triangle distribution for the higher values 
(see Figures 1 and 2, black triangles). It is also 
characterized by power-laws in the distribution of 
avalanches (see reference [2] for a detailed description), 
first return times and distance between consecutive 
activities. 
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Figure 2.- Distribution of higher node values at the 
stationary state (black triangles) without noise. We 
present also the distribution for some type 1 noise levels 
(see inset). 

The Method 

To study the response of the systems to external noises 
we have introduced two types of them. The first, type 1, 
by breaking the selection rule (of selecting the highest 
barrier) at each n time steps (we have simulated the 
system for n = 1, 10 and 100) and selecting an arbitrary 
one to change its value and the values of the neighbors to 
new random numbers. The second, type 2, by changing 
in a small amount x all the barriers at each n time steps 
(we have simulated, once more, n = 1, 10 and 100, and x 
= 0.05) and then apply the ordinary selection/updating 
rule. Through this methodology we have analyzed the 
way in which the distribution function in the form of power-
laws for avalanches, first return times and distance 
between consecutive activities (the ones which 
characterize the existence of a self-organized criticality) 
degrade. To illustrate, however, we have preferred to use 
the degradation of the stationary distributions in figures 1 
and 2. 

Power-laws are defined by the equation,  

f (t) = c.td                                  (1) 

where f (t) is the frequency distribution of t values, c is a 
proportionality constant and d is the exponent of the 
power-law. In the present model, as insinuated above, the 
distribution functions of avalanches, first return times and 
distance between consecutive activities follow power-
laws, pointing to the existence of a critical self-organized 
state where activities of all sizes (avalanches) can be 
observed. The unique limitation for avalanche sizes is the 
sizes of the system. 
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Figure 3.- Sum of the absolute value of the difference 
between equivalent bins for the distributions in Figure 1 
(note that all the graph are histograms) taking as the 
common reference distribution the stationary one. 

A second methodology involves the study of dynamical 
characteristics of the systems. In particular, we look 
obtaining the time elapsed to a system in the critically 
self-organized state evolve to a disordered one and the 
time elapsed to a disordered system attain the critically 
self-organized state. In more realistic models (and in real 
systems) this would serve to evaluate the time needed, 
under noise, for the system to abandon the critically self-
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organized state, i.e., when no more extremely destructive 
events should be expected.  
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Figure 4.- Sum of the absolute value of the difference 
between equivalent bins for the distributions in Figure 2 
(note that all the graph are histograms) taking as the 
common reference distribution the stationary one. 

Results 

Figure 3 presents the sum of the absolute value of the 
difference between equivalent bins for the distributions in 
Figure 2 taking as the common reference distribution the 
stationary one. The type 1 noise was applied at different 
rates (after one step, after 10 steps and after 100 steps 
each). The noise seems to more effective only at high 
rates.  

Figure 4 presents the sum of the absolute value of the 
difference between equivalent bins for type 2 noise (a not 
shown graph, similar to Figure 2). The type 2 noise was 
applied at the same rates than the type 1. Here also, the 
noise seems to more effective only at high rates. 

However, from the comparison between figures 3 and 4 it 
becomes apparently that the type 2 noise is more 
effective in destroying the SOC state than the type 1. The 
ratio for noise application rates 1⁄100 is around 2.5 for 
type 1 noise while is around 7 for type 2 noise. 

It is worth to mention here that we have used the higher 
values distributions instead of the distribution of nodes 
because the former is much more behaved that the 
second one (implying in smaller errors). 

Just for illustration we include in Figure 5 the distributions 
of distances between consecutive activities in 1D at 
different rates of type 1 noise applications. The power-
law, one of the signatures of SOC in these systems is 
also gradually destroyed. 

Finally, we present in Figure 6 the dependence of the 
higher values on time for a 300x300 system. We have 
done this type of graph for different size. The results for 
the time τ to the stationary state as a function of size are 
presented in Figure 7, which brings an estimative for the 
time the system needs to organize or disorganize itself. 
This could be an important factor in real cases. 
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Figure 5.– Frequency distribution for Euclidean distance 
between consecutive changes in nodes. Note that the 
distribution goes to a plateau as the frequency in which 
the noise is applied increases, i.e., there is no longer a 
power law distribution, nor a critical state.  

 
Figure 6.- Dependence of the higher values on time for a 
300x300 system. From the interception of the power-law 
(note that is a log-log graph) with the plateau 
extrapolation, it is estimated the time to reach the 
stationary state for a given system size. The simulation 
begins at the completely disordered state. 
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Figure 7.- Time to the plateau (see Figure 6) as a function 
of system size.  
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Conclusions 

We have introduced two types of noise in a simple SOC 
model and observed that, upon sufficiently high rates of 
noise application the critical state is practically destroyed 
which is translated in the absence of large destructive 
events. We have also evaluated the time needed to 
effectively destroy the SOC state. It should not be 
expected with a simple model, like the one used by us to 
illustrate this facts, detailed results. However, some 
knowledge on general lines and methodologies to apply in 
more detailed models, or even in real cases, has been 
obtained. More realistic models should include other kinds 
of noises, for example, local noises simulated by locally 
changing the threshold values in some regions of the 
simulated systems, to simulate different geological 
characteristics along faults (in the case of earthquakes). 
Works along those lines are in course and their results 
will be published elsewhere. 
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