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Abstract 

Symbolic Models applied to Synthetic Aperture Sonar 
images are proposed in order to assess the validity and 
reliability of use of such models and evaluate how 
effective they can be in terms of image classification and 
segmentation. We developed an approach for the 
description of sonar images where the pixels distribution 
can be transformed into points in the symbolic space in a 
similar way as symbolic space can encode a trajectory of 
a dynamical system. One of the main characteristic of 
approach is that that points in the symbolic space are 
mapped respecting dynamical rules and, as a 
consequence, it can possible to calculate quantities that 
characterize the dynamical system, such as Fractal 
Dimension (D), Shannon Entropy (H) and the amount of 
information of the image. It also showed potential to 
classify image sub-patterns based on the textural 
characteristics of the seabed. 

 

Introduction 
 

The increasing demand for submarine information, 
coupled with the rapid expansion of seafloor survey 
technology, has created a need for new methods of 
seafloor imagery processing (Reed and Hussong, 1989). 
Of all remote sensing modalities available for underwater 
applications, acoustic methods, covering frequency 
ranges from a few Hz to several MHz, are by far the most 
flexible and widely used (Capus, 2008). Thus, sonar 
registers revealing the geophysical characteristics of the 
seabed represent an essential tool for the effective 
knowledge of the marine environment.  

Due to this growing interest, several studies have 
proposed methods of segmentation of sonar registers 
with distinct objectives. There are two basic approaches 
to addressing the image processing methods in sonar 
registers: 1) The segmentation and classification of image 
based on seabed texture. According to the definition of 
Martin et al, 2008: “segmenting” an image consists in 

dividing the image into homogeneous zones delimited by 
boundaries so as to separate the different entities in the 
image and “classification” consists in labelling the various 
components visible in an image texture (e.g. sedimentary 

patterns; benthic habitats). 2) feature extraction and 
survey underwater objects and structures such as 
shipwrecks, tubes, pipelines etc, and also for military 
purposes as called mine-like objects (MLOs).  

One of the challenging issues in both approaches is the 
use of automatic techniques that could identify and define 
some characteristics of the seabed without any sort of 
direct human intervention. Estimations of seabed 
roughness and MLOs can be time consuming and often 
produce inconsistent results, due to the subjective nature 
of the analysis, automated algorithms can potentially 
process sonar images in a more consistent and timely 
manner. Several post processing techniques have been 
proposed in order to increase the enhancing and 
identification capability of classification of the seabed 
sonar images (Stewart, 1994; Carmichael et al 1996; 
Reed et al. 2006; among others). 

Most of the methods of classification is based on image 
processing, which uses the acoustic image of the sonar, 
including both echo structure and shadow shape to 
establish an analysis of the seabed. The image 
classification, also called Geospatial Bitmaps (GB) 
processing (Lohrenz and Gendron, 2007) is often based 
on the statistical and/or their geometrical distribution of 
the sonar image pixels. Three basic kinds of regions can 
be visualised in a GB (i.e. pixel response): i. echo, ii. 

shadow, and iii. sea-bottom reverberation (SBR). The 
echo is caused by the reflection of the acoustic wave on 
an object while the shadow zone corresponds to a lack of 
acoustic reverberation behind this object. The remaining 
information constitutes what can be called a reverberation 
(Mignotte, 2000)  

An usual approach to simultaneous analysis of combined 
texture in characterization and segmentation of patterns 
of response in remoted sensing images is based on 
autoregressive analysis. These models are based on the 
premise that a range of pixels in the image (2D models) 
exhibit certain complex behaviors similar to a quasi-
periodic process in time and as such, it can be 
investigated  by models as wavelets and the hidden 
Markov tree (HMT). Alternatively, we propose a 
dynamical approach for the description of the image 
where the pixels distribution in the GB can be transformed 
into points in the symbolic space in a similar way as 
symbolic space can encode a trajectory of a dynamical 
system. One of the main power of this approach is that 
that points in the symbolic space are mapped respecting 
dynamical rules and, as a consequence, it can possible to 
calculate quantities that characterize the dynamical 
system, such as Fractal Dimension (D), Shannon Entropy 
(H) and the amount of information of the system (or in the 
case, the GB), which is also related to the way points in 
the symbolic space are mapped to other points. All this 
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characteristics provide a fully description of what the 
original image contains.  

The dataset used was based on Synthetic Aperture Sonar 
images collected by the NATO Undersea Research 
Centre (NURC). The sonar plataform was a MUSCLE 
AUV equipped with a 300 kHz sonar with a 60 kHz 
bandwidth that can achieve an along-track image 
resolution of approximately 3 cm. The studied area is in 
the Baltic Sea off the coast of Latvia (Williams & Coiras, 
2010).  

 We have used a series of 9 images with different seabed 
patterns such as mud flat, sand rippled, rock etc. The 
main objective of the project was to assess the 
performance of a proposed classification and 
segmentation framework and compared it with other 
methods proposed on the literature. 

Methods 

The creation of symbolic sequences is based on a 
specific encoding algorithm of a sequence of intensity 
levels in the sonar image (representing the echo intensity 
detected by the sensor). Each group with “L” pixels is 
codified in a symbolic sequence of length “L”, with each 
intensity level encoded by a real number (N). The 
symbolic sequences were constructed using pixels along 
the horizontal direction of the image since it is consistent 
with the direction of the sonar acquisition that places the 
shadows along the horizontal axis (i.e. the shadow is the 
back part of the target). The length of the symbolic 
sequence (L) should vary depending of the goal and 
target type and the overall characteristics of the area.  

The encoding of the sequences into real numbers need to 
satisfy some conditions in order to try to capture the 
deterministic behaviour of the image 

A.  Specify the closeness of two symbolic 
sequences, i.e. two similar symbolic sequences 
should be encoded by two real numbers that are 
close. 

B.  Encode the symbolic sequences in a way that a 
shift in two different symbolic sequences does 
not alter strongly the encoded sequences. And 
then, two nearby points of the pixel sequence 
representing the symbolic sequences N diverge 
according to the deterministic principles 
previously described. 

In order to conform with conditions A and B, the encoding 
of the symbolic sequences should take into consideration 
that symbols near the pixel (i; j) are more representative 
than symbols appearing far from the pixel (i; j) and that 
exactly equal symbolic sequences, but one appearing in 
the past sequence (previous pixels) and the other 
appearing in the future sequence (posterior pixels) should 
be close but not so close. 

So, given a symbolic sequence the encoding of the past 
symbolic sequence is given by 
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and the encoding of the future sequence is given by 
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The real number ( [0; 1]) encoding the past symbolic 

sequence is represented by δ and the real number 
representing the future symbolic sequence is represented 

by ϒ ( [0; 1]). The encoding proposed in Eqs. (1) and (2) 

is an extension of the encoding originally proposed to 
study 2D chaotic maps that could be encoded by an order 
-2 Generating Markov Partition (GPM) (Cvitanovic; 1998). 

The symbolic sequence encoding can be summarized by 
the figure 1. 

 

 

Figure 1- Scheme of the symbolic space creation. Each 
pixel is encoded by a sequence of N pixels to its left (past 
encoded) and right (future encoded) given by equations 
[1] and [2]. The values of the intensity levels is reduced to 
N partitions or symbols (“a”, “b”, “c” and “d” in the figure). 

 
A 2D picture showing all the points with coordinates (δ; ϒ) 
is called the symbolic space of the image. Examples of 
symbolic spaces from a sonar image can be seen in 
figure 2. The figure 2A represents the whole image 
codified into the symbolic space. The Figures 2B, 2C and 
2D represent the details of image in some specific seabed 
types, (object, flat and rippled respectively). 
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Figure 2 - Symbolic spaces of a sonar register image (A), 
in (B) of a selected area around a target, in (C) within the 
at a flat sea bed and in (C) within the ripple sea bed. 
Selected boxes have size LB=200 pixels and symbolic 
sequences have length of L=50. Horizontal axis represent  
δ; (past symbolic sequences) and vertical axis represents 
ϒ (future symbolic sequences). 
 

The symbolic space has its own dynamical 
characteristics. As such, all the tools, quantities, and 
approaches employed to characterise a dynamical 
system can be used for the proper characterisation of the 
symbolic spaces. There are two quantities that are 
relevant for the purpose of characterising symbolic 
spaces from sonar images. 1) The fractal dimension and 
the linear function f(a; b) from which it can be estimate the 
fractal dimension of the symbolic space and 2) The 
average mutual information between past and future 
symbolic sequences. 

To extract the fractal dimension it is necessary to make a 
grid of the symbolic space Σ(i; j) (of a selected area in the 
image). This grid is constructed with boxes of sides ε, as 
illustrated in Fig. 3. 

 

 

Figure 3- Illustration of a grid of boxes of sides used to 
calculate the fractal dimension of the symbolic space of a 
selected area in the image 

The fractal dimension of the points in the space Σ (i; j) is 
defined as 

                   
           

       
                               [3] 

 

where N0 ( ) refers to the number of boxes that are being 
occupied by points.  

The linear fitting of the points with coordinates [logN0(εi) - 
log (εi)] is a linear function f(a; b) with the parameters a 
representing the constant term of the linear function and b 

the linear coefficient reflecting the fractal dimension. 

Mutual information measures the degree of uncertainty 
from one sequence by observing the another. Consider 
two sequences given by S1 (past) and S2 (future). The 
average mutual information between past and future 
sequences in the symbolic space Σ(i; j) (from a selected 
area) can be represented by MI(S1; S2). In order for MI to 
be large, S1 and S2 should be highly correlated. If S1 is 
either not correlated to S2 (or they contain few 
information) then MI(S1; S2) value will be small. Baptista 
et al. 2011 shows a simple way to calculating the mutual 

information between points laying in symbolic spaces 
using Lyapunov exponents and the fractal dimension of 
the symbolic space. (The Lyapunov exponent measures 
how much nearby points spread exponentially).  

The mutual information between past and future 
sequences should provide important characteristic to 
identify patterns in the image. For example, a flat sea 
bed, with lower signal response, produces sequences that 
exchange no mutual information, on the other hand, 
rippled seabed should exchange some information, but 
typically is expected that this amount is quite small, since 
the symbolic sequences will reproduce a repetitive 
periodic pattern. The mutual information between two 
periodic signals is zero, despite the fact that two signals 
are highly correlated. And we expect that the mutual 
information between symbolic sequences in zones with 
high complex seabed patterns are be large, since past 
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and future symbolic sequences will not only be correlated 
but also when isolated they should be composed by many 
different symbols, which implies large amount of 
information. 

Results 

Analyzing different sonar images patters modulating 
values of N and L and the parameters a and b from the 

function given by eq. [3] it was possible to characterize 
several characteristics of the sonar images and thus 
allowing segmenting the images based on the symbolic 
encoding of texture patterns. 

The segmentation process itself was based on a empirical 
characterization of these parameters in the images in 
specific target areas where the seabed pattern was 
visually identified (training). The variation of the size of 
the training areas also resulted in different segmentation 
performances. 

 In most of the analyzed datasets, it was possible to 
achieve a successful rate of identification between 
different types of seabed, specifically flat and rippled 
patterns. 

We have encoded a set of 9 images and have scanned 
the images considering training areas of sides BL=100 
and 50 pixels. 

The figure 4 shows an example of a typical complex 
image with different patterns of seabed (4A) based on the 
segmentation process using different patterns of symbolic 
parameters (the colour points are given by certain values 
of the function f(a; b)). The figure 4B shows a 

segmentation using 9 symbols (N=9) with sequences of 
50 pixels (L=50) and training box of 100 (BL=100) 
presented the better overall results to separate the flat to 
the rippled patters indicating the clear border between the 
acoustic environments. We noticed that if the scanning of 
the image is done with considering smaller training areas, 
finer details are captured. The example of the figure 4C, 
shows that with smaller L and BLs, specific characteristics 
inside the rippled pattern area can be recognized. The 
same happen inside of a pre-classified “flat seabed” area 
showed in 4D. 

  Detailed analysis of these areas shows evidences that 
the symbolic sequences are identifying subtle nuances of 
the seabed with specific characteristics reflected in 
changes in the backscattering properties of the imaged 
and the surrounding environment. The figure 5 shows the 

detailed part of the top right part of the image displayed 
on the figure 4 with the delimited pattern characterized by 
the model parameters from 4D (N=7, L=12, BL=50). It is 
observed that the model could correctly identify darker 
pattern of pixels probably associated to different type of 
seabed composition or signal lost.  

The application of the method in different images also 
showed that it is not clear how the parameters can be 
adjusted in order to determine a set of pre-defined 
settings to optimize the segmentation in all images. 
Therefore the training parameters are still crucial to 
segment each image. However, future studies concerning 
changes of parameters from the model could establish 
optimum adjustments to treat any sort of image 

dismissing the need of training making the process more 
automatic. 

 

 

 

Figure 4 – Image of a sonar register (a- Top). The red 
dots filled representing the location of the centre of a 
selected sequence that has produced a value of f(a; b) ≥ 
4:5.  The scanning of the image done with BL = 100 and L 
= 50. (b- top Centre).  BL = 50 and L = 24 (c – bottom 
centre) and BL = 50 and L = 12 (d - Bottom).  

 

 
Figure 5 – Detail of a segment of the sonar image shown 
in figure 4d. The yellow line indicates the area with lower 
intensity levels associated with a distinct pattern of signal 
reflection.  

 



CONTI, L.A. & BAPTISTA, M. S 


Twelfth International Congress of the Brazilian Geophysical Society 

5 

 

Acknowledgments 

 
The authors would like to acknowledge the support of the 
UK  Defence Science & Technology Laboratory under 
Grant CDE17623 

.We would also like to acknowledge the support of NATO 
UnderSea Research Centre for providing a set of 
declassified SAS images gathered by NURC 

 

References 
 

Baptista, M. S. Rubinger, R. M., Junior, E. R. V., 
Sartorelli, J. C., Parlitz, U., Grebogi, C. 2011 Upper and 
lower bounds for the mutual information in dynamical 
networks", to be submitted.. 

Capus,C. G., et al., 2008 Data correction for visualisation 
and classification of sidescan SONAR imagery ET Radar 
Sonar Navig.", 2, pp. 155-169 

Carmichael, L. M., Linnet, Clarke, S. J., and Calder, B. R., 
1996 \Seabed classification through multifractal analysis 
of sidescan sonar images," Proc. Inst. Electron. Eng. 
Radar, Sonar, and Navigation, 143, pp. 140-148 

Cvitanovic, P., Gunarante, G. H., and Procaccia, I., 1988 
Topological and metric properties of Henon-type strange 
attractors," Phys. Rev. A. 38, pp. 1503-1520 

Martin, A., Laanaya, H., and Arnold-Bos, A., 2008 
Evaluation of Uncertain Image Classification and 
Segmentation," Journal Pattern Recognition, 39, pp. 
1987-1995 

Lohrenz, M. C. and. Gendron, M. L., 2007 Development 
of an Automated Roughness Estimation Algorithm for 
Sidescan Imagery," Proceedings of the Oceans 2007 
Conference, Aberdeen, Scotland. June pp. 18-21 

Mignotte, M. C., et al., 2000 Sonar Image Segmentation 
Using an Unsupervised Hierarchical MRF model IEEE 
transactions on image processing," 9, pp. 1226-1231. 

Reed, S., Ruiz, I.T.,Capus, C., Petillot, Y., 2006 The 
fusion of large scale classified side-scan sonar image 
mosaics", Image Processing, 15, pp. 2049-2060. 

Williams, D.P., Coiras, E., 2010 On sand ripple detection 
in synthetic aperture sonar imagery Acoustics Speech 
and Signal Processing (ICASSP)," 2010 IEEE 
International Conference on Issue Date, pp. 1074-1077. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


