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Resumo

Conventional implementations of 3D finite-difference
(FD) migration use splitting techniques to accelerate
performace and save computational cost. However,
such techniques are plagued with numerical
anisotropy that jeopardizes correct positioning of
dipping reflectors in the directions not used for the
splitted operators. We implement 3D downward
continuation migration without splitting in the space
coordinates using a complex Pad é approximation
and implicit finite differences. In this way, the
numerical anisotropy is eliminated at the expense
of a computationally more intensive solution of
a large banded linear system. We compare the
performance of the iterative stabilized biconjugate
gradient (BICGSTAB) and the multifrontal massively
parallel direct solver (MUMPS). It turns out that
the use of the complex Pad é approximation is an
effective preconditioner for the BICGSTAB, reducing
the number of iterations relative to the real Pad é
expansion of the FD operator. As a consequence, the
iterative BICGSTAB method was more efficient than
the direct MUMPS method when solving for a single
term in the Pad é expansion. The properties of these
algorithms are evaluated computing the migration
impulse response in the SEG/EAGE salt model.

Introduction

Efficient implementations of 3D FD migration use the
splitting technique along horizontal coordinates to avoid
the solution of large banded linear systems (Claerbout,
1985) at each downward continuation step. Splitting the
migration operator along inline and crossline directions
reduces 3D migration to a sequence of 2D downward
continuation steps making the algorithm highly efficient.
As a drawback splitting introduces numerical anisotropy
which can damage the image of reflectors (Brown, 1983).
Several strategies are used to remedy this problem usually
assuming a homogeneous medium and using wavefield
interpolation to handle lateral velocity variations (Li, 1991).
However, such correction methods add again to the cost
and introduce additional errors and artifacts. Exploring
another idea to avoid the expensive direct solution of these
large systems, Cole (1989) investigated the use of iterative

methods to implement FD migration without splitting and
evaluated the performace of overrelaxation, Jacobi, and
Gauss-Seidel methods Iserles (1996). He reported the
poor conditioning of the linear system matrix for low
frequencies which degraded the performace of iterative
solvers to a prohibitively high computational cost. Along
a similar line, Nichols (1991) investigated the performace
of the conjugate gradient method (CG) in dependence on
the choice of the initial value for preconditioning. He found
a degradation of performance of CG for low frequencies
but reported that the performance improves when the
propagation of energy associated with high angles and
evanescent modes is attenuated.

In this respect, it is interesting to note that Amazonas
et al. (2007) improved the quality of migrated images by
representing the downward continuation operator using
the complex Padé approximation (Millinazzo et al., 1997),
which is essentially a means of attenuating the propagation
of evanescent and high-angle wave modes. Moreover,
new iterative methods to solve complex linear system are
available that allow to compute the solution of very large
linear systems. For example, the stabilized biconjugate
gradient (BICGSTAB) method can solve poor conditioned
complex linear systems more efficiently than CG (Van der
Vorst, 1992). Another development in this area is the
multifrontal massively parallel (MUMPS) direct solver which
can efficiently solve large complex banded linear systems
using Gaussian decomposition (Amestoy et al., 2001,
2006). In this paper, we investigate whether the limitations
observed by Nichols (1991) can be overcome when using
the complex Padé approximation in the implementation
of 3D downward continuation by finite differences without
splitting. Our numerical experiments in homogeneous
media and in the SEG/EAGE salt model indicate that the
complex Padé approximation is an effective preconditioner
for 3D FD migration, so that the iterative BICGSTAB
approach outperforms the massively parallel MUMPS
solver when using a single term of the Padé expansion.
If more terms are required to better model high dip events
the direct solver is required.

Implicit finite-difference downward continuation

The one-way wave equation for downward continuation in
the space-frequency domain is

∂P(x,ω)

∂ z
= −

iω
c(x)

√

1+
c(x)2

ω2 DP(x,ω) , (1)

where x = (x,y,z) is the position with x and y denoting
the coordinates along inline and crossline directions and
z denoting depth, ω is the angular frequêncy, P(x,ω) is the
wavefield spectrum, D = D2

x + D2
y , with Dx ≡ ∂

∂ x , Dy ≡ ∂
∂ y ,
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and c(x) represents the wave speed.

The square-root operator in equation (1) can expanded
using the complex Padé series (Millinazzo et al., 1997;
Amazonas et al., 2007):

∂P
∂ z

= −
iω

c(r)



C0 +
N

∑
n=1

An
c2(r)
ω2 D

1+Bn
c2(r)
ω2 D



 , (2)

where N indicates the order of the Padé expansion and C0,
An e Bn are the complex coefficients:

C0 = eiθ/2

[

1+
N

∑
n=1

an
(

e−iθ −1
)

1+bn
(

e−iθ −1
)

]

,

An =
ane−iθ/2

[

1+bn
(

e−iθ −1
)]2 ,

Bn =
bne−iθ

1+bn
(

e−iθ −1
) . . (3)

Here, θ indicates the angle of rotation for the branch cut
of the square root in the complex plane, and an and bn
are the real Padé expansion coefficients. The constant C0
is actually an approximation to one that gets better with
an increasing number of terms N used in the expansion.
Therefore, we can set C0 = 1.

The numerical solution of equation (2) is obtained by
solving a sequence of differential equations (Claerbout,
1985). At each continuation step ∆z, the solution is
computed recursively for each term of the expansion. First
one solves:

∂P(x,ω)

∂ z
= −i

ω
c(x)

P(x,ω) (4)

and subsequently for n = 1, . . . ,N:

∂P(x,ω)

∂ z
= −i

ω
c(x)





An
c2(x)
ω2 D

1+Bn
c2(x)
ω2 D



P(x,ω) , (5)

where the solution of the previous term is the initial
condition for the solution of the next one. This algorithm
converges for small ∆z.

Using the Crank-Nicolson finite-differences scheme
(Iserles, 1996) to approximate the derivative operators,
equations 5 are reduced to the linear systems

(I+αD)Pk+1 = (I+α∗D)Pk , (6)

where

α ≡ Bn + i
ω∆z

c
An , (7)

α∗ ≡ Bn − i
ω∆z

c
An , (8)

D ≡

(

c2

ω2

)[

Dx

(∆x)2 +
Dy

(∆y)2

]

, (9)

in which I is the identity matrix, Dx and Dy are the finite-
differences matrices representing the derivatives along
the x and y coordinates, and Pk and Pk+1 represent the
wavefield at the grid at successive depth levels. The matrix
D has dimension Nx ×Ny. Though sparse, this matrix can

have a large band. This increases the computation cost
of solving system 6 with direct methods. An efficient and
frequently used method to reduce this cost is splitting along
inline and crossline directions,
(

I+α
(

c
ω∆y

)2

D2
x

)

(

I+α
( c

ω∆x

)2
D2

y

)

Pk+1 =

(

I+α∗

(

c
ω∆y

)2

D2
x

)

(

I+α∗
( c

ω∆x

)2
D2

y

)

Pk . (10)

The solution of this linear system is a sequence of
tridiagonal linear systems each one of dimension Nx
and Ny. Unfortunately, this approximation introduces
numerical anisotropy. Figure 2 compares the wavefields
in a homogeneous medium computed at the same depth
without splitting, equation (6), and with splitting along
inline and crossline directions. The noncircular format
of the result of splitting is the consequence of numerical
anisotropy. To reduce numerical anisotropy, Li (1991)
proposed a correction in the frequency-wavenumber
domain which requires wavefield interpolation in laterally
heterogeneous media and Ristow and Rühl (1997) used
multiway splitting. However, such correction methods add
to the computational cost and introduce additional errors
and migration artifacts. For this reason, we are interested
in alternative methods to solve system (6) that do not make
use of splitting techniques.

Iterative methods

The sparseness of linear system (6) makes it suitable
for iterative methods (Iserles, 1996). Cole (1989)
investigated the performance of some iterative methods
to solve equation (6) using the first order real Padé
expansion. He noticed the slower convergence, or even
convergence failure, of methods like overrelaxation, Jacobi
and Gauss-Seidel when applied for frequencies below
ω2 = 8c2bn/(∆x)2. (Nichols, 1991) used the conjugate
gradient method (CG) to solve (6) because of its better
theoretical covergence properties. He also noticed the
poor performance of this method for low frequencies, but
reported some improvement in the convergence speed of
CG when evanescents modes are filtered out. However,
because CG solves the normal equations, the performance
degrades rapidly for ill conditioned matrices.

We investigate whether the limitations of conventional
iterative methods as reported in the cited works still hold
for more modern techniques. Taking into account the
observation of Nichols (1991) that the performance of
CG improves when the propagation of energy associated
with high angles and evanescent modes is attenuated,
we use the BICGSTAB algorithm (Van der Vorst, 1992) to
implement downward continuation without splitting using
the complex Padé expansion. We chose BICGSTAB
because ofits better convergence properties than CG for
complex matrices. The performance of iterative methods
improves when the matrix is strictly diagonally dominant
(Iserles, 1996). For a matrix A this means

|Aii| ≥
N

∑
j=1

|Ai j|i6= j i = 1, ...,N . (11)

For a homogeneous medium we can verify when the matrix
in equation (6) satisfies this condition. In this case its
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diagonal entries are

Aii =

[

(

ω∆x
c

)2

−4

(

B1 + i
ω∆x
2c

A1

)

]

and the only five nonzero off diagonal entries in each row
are equal to

Ai j =

(

B1 + i
ω∆x
2c

A1

)

i 6= j .

Thus, this matrix is diagonally dominant if

ω ≥ ωL =
c

∆x

[

−2ℑ{A1}+

√

(2ℑ{A1})
2 +8ℜ{B1}

]

(12)

where ℑ{A1} and ℜ{B1} represent the imaginary and
real parts of A1 and B1, respectively. This inequality
determinines the minimum frequency for which the matrix
is strictly diagonally dominant. For frequencies above this
limit, iterative methods should perform better. Although this
result is only a sufficient condition, it gives some clues
on the performance of iterative methods for downward
continuation. The limit depends on the ratio between
propagation velocity and grid interval. When this ratio
increases, the convergence of iterative methods is slower.
It also implies that the complex Padé expansion can
affect the convergence through ℑ{A1}. The top left part
of Figure 1 shows how the limit frequency fL = ωL/2π
depends on the branch cut rotation angle θ , for ∆x = 10 m
and c = 1500 m/s. This figure indicates that increasing θ
should improve the performance of iterative methods.
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Figura 1: Top left: Limit frequency, fL, versus rotation angle
in degrees. Top right: number of iterations of BICGSTAB
for each frequêncy for c = 1500m/s and h = 20m. Bottom
left: iterations versus frequency, c = 1500m/s and h = 10m.
Bottom right: iterations versus frequency, c = 4500m/s and
h = 10m.

To evaluate how the actual behavior of BICGSTAB relates
to inequality (12), the remaining graphs in Figure 1 display
the number of iterations as a function of frequency for
increasing values of the ratio c/∆x for real and for complex
Padé coefficients with θ = 25◦ and θ = 45◦. These graphs
shows that the complex Padé approximation markedly

improves the convergence of BICGSTAB when the ratio
c/∆x increases. Increasing the branch rotation from 25◦

to 45◦, though reducing the number of iterations, has a less
pronounced effect.

Numerical Results

As a first test, we computed the impulse response of the
3D FD migration operator in a homogeneous medium with
and without inline and crossline splitting. The propagation
velocity is 1500 m/s. We used a single term of the
complex Padé expansion with rotation angle θ = 45◦ to
approximate the migration operator. The impulse response
without splitting was computed using BICGSTAB. The grid
dimensions are 610×610×210 along coordinates x, y, and
z, respectively. The grid spacing is uniform and equal to
10 m. The volume injection source is located one grid
spacing below the surface in the center of the grid. The
source signature is a Ricker pulse with peak frequency
25 Hz, and the sample rate is 8 ms.

Figure 2 shows sections of the 3D impulse responses
at depth z = 1050 m. The red circle in these images
indicate the exact position. The numerical anisotropy
caused by the splitting is evident, as well as the absence
of numerical anisotropy in the impulse response computed
by BICGSTAB.
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Figura 2: FD impulse response in a homogeneous
medium. Left: using splitting along inline and crossline
directions. Right: whit-out splitting along coordinate
directions.

Next, we use the SEG/EAGE salt model to evaluate the
performance of 3D migration without splitting in a complex
inhomogeneous medium. The strong lateral variations
between the sediments and the salt body and the high
velocity of the salt are a challenge for the iterative methods.
To filter out the spike velocity contrast used to simulate
reflectors in the original model we applied median filter of
size 7×7×7. The grid size, source position and source
pulse are the same as for the homogeneous example.
We computed FD impulses responses using BICGSTAB
with a single term of the complex Padé expansion θ = 25◦

and θ = 45◦. These impulse responses are compared
to FD impulse response computed using the direct solver
MUMPS using three terms of the complex Padé response
and θ = 45◦. Finally, we compare them to the 3D impulse
response of reverse time migration.

For a single term of the complex Padé expansion the
MUMPS direct solver is two times slower than BICGSTAB.
On the other hand, for higher order complex Padé terms,
the performance of BICGSTAB degrades rapidly, and
increasing the angle θ does not help in this case. This
agrees with the observation of Nichols (1991) that iterative
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Figura 3: Sections of 3D migration impulse response in the
plane x = 1500 m. Top: FD migration, θ = 25◦. Bottom: RTM
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Figura 4: Sections of 3D migration impulse response in the
plane x = 3380 m. Top: FD migration, θ = 25◦. Bottom: RTM
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Figura 5: Sections of 3D migration impulse response in the
plane x = 4160 m. Top: FD migration, θ = 25◦. Bottom: RTM

methods have more difficult modeling the wavefield
propagating at higher dip angles. Only the direct solver
was able to compute the impulse response with three Padé
terms.

Figures 3, 4 and 5 show three vertical sections of the
impulse response along the inline direction (x) computed
with 3D FD migration using BICGSTAB with a single
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Figura 6: Sections of 3D migration impulse response in the
plane y = 1500 m. Top: FD migration, θ = 25◦. Bottom: RTM.
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Figura 7: Sections of 3D migration impulse response in the
plane y = 3380 m. Top: FD migration, θ = 25◦. Bottom: RTM.
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Figura 8: Sections of 3D migration impulse response in the
plane y = 4160 m. Top: FD migration, θ = 25◦. Bottom: RTM.

complex Padé term with θ = 25◦ and compare them to
corresponding 3D reverse time migration results. Because
of its intrinsic restrictions, FD migration cannot properly
image events dipping above 45◦. The positioning of
FD migrated lower dipping events correctly matches the
corresponding RTM events. The relative amplitude of the
events in the FD migration results does not reproduce
the reverse time migration amplitudes for corresponding
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Figura 9: Sections of 3D impulse responses in the plane
z = 550 m. Top left: FD migration computed using
BICGSTAB, θ = 25◦. Top right: FD migration using
BICGSTAB θ = 45◦. Bottom left: FD migration computed
using direct solver MUMPS, θ = 45◦. Bottom right: RTM.
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Figura 10: Sections of 3D impulse responses in the
plane z = 1050 m. Top left: FD migration computed
using BICGSTAB, θ = 25◦. Top right: FD migration using
BICGSTAB θ = 45◦. Bottom left: FD migration computed
using direct solver MUMPS, θ = 45◦. Bottom right: RTM.

events. However, it should be kept in mind that amplitude
comparisons are difficult because the presence of upward
propagating waves in the RTM image may lead to a
different scaling of the figures.

Figures 6, 7 and 8 show the corresponding comparison of
vertical sections along the crossline direction (y). Again,
note the good match among corresponding events dipping
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Figura 11: Sections of 3D impulse responses in the
plane z = 1350 m. Top left: FD migration computed
using BICGSTAB, θ = 25◦. Top right: FD migration using
BICGSTAB θ = 45◦. Bottom left: FD migration computed
using direct solver MUMPS, θ = 45◦. Bottom right: RTM.
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Figura 12: Sections of 3D impulse responses in the
plane z = 1550 m. Top left: FD migration computed
using BICGSTAB, θ = 25◦. Top right: FD migration using
BICGSTAB θ = 45◦. Bottom left: FD migration computed
using direct solver MUMPS, θ = 45◦. Bottom right: RTM.

up to around 45◦ degrees, but the differences for higher
propagation angles and in amplitudes.

Figures 9, 10, 11, and 12 show horizontal sections of the
3D impulse response computed by four different methods:
FD migration solved using BICGSTAB for one complex
Padé term with θ = 25◦ (top left) and θ = 45◦ (top right),
FD migration using the MUMPS direct solver for three
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complex Padé terms with θ = 45◦ (bottom left) and reverse
time migration (bottom right). The comparison to the RTM
response is difficult in these horizontal sections, because
upward propagating waves cannot be easily recognized as
such. The most striking difference between the different
methods appears in Figure 9, where the two BICGSTAB
results don’t position the event correctly and present strong
artifacts. These differences in the shallowest section
result from the 45◦ dip limit of the single-term complex
Padé expansion. The wide-angle response of three-
term complex Padé approximation used in the MUMPS
solution is sufficient to correctly recover the position and
suppress the artifacts. However, note that this wide-angle
response costs six times more computation time than using
BICGSTAB with a single term. For the remaining sections
the difference among corresponding events diminishes with
depth, indicating that the iterative solver is sufficiently
accurate for propagation directions below 45◦.

Computation time

When comparing non-splitting solvers of 3D FD wave-
equation migration, a word on computation time is
indispensable. In our implementation, the BICGSTAB
solution for one-term complex Padé FD migration took
half as much time as the corresponding MUMPS solution
and about five times as much as a corresponding
solution based on alternating four-way splitting plus Li
correction with 10 reference velocities. The three-term
MUMPS solution consumes three times more time than
the one-term solution, while the three-term BICGSTAB
solution did not converge. The computation time of
our RTM implementation is not fully comparable, since
it uses no disk I/O, which consumes much time in our
implementations of the other methods. Under these
circumstances, it was of the same order as the one-term
MUMPS solution.

Conclusions

The performance of iterative methods for 3D downward
continuation without splitting along inline and crossline
directions improves markedly using the complex Padé
approximation. Numerical experiments using the
SEG/EAGE salt model show the feasibility of FD migration
without splitting for such a complex velocity model, being
less then an order of magnitude slower than conventional
splitting approaches. We provided a simple analysis
indicating that the complex Padé expansion improves the
conditioning of FD downward continuation. For a single
term in the Padé expansion, BICGSTAB outperforms
the massively parallel direct solver by a factor of two.
The performance of iterative methods degrades rapidly
when more terms of the Padé are used but does not
affect MUMPS in the same way. The computation time of
MUMPS increases only linearly with the number of terms.

Efficiency of full solutions without operator splitting still
remains an issue. Our results indicate that the combination
of the complex Padé approximation with additional
preconditioning can further reduce the computational cost,
possibly bringing non-splitting solutions within the range
of more sophisticated corrections to splitting. Moreover,
since low frequency is the main problem affecting the
performance of BICGSTAB, multigrid techniques can
certainly help to speed up these methods.
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