

Gravity Transmission Parameters between at Rest Masses: a Proposition

Fernandes, C.E. de M.J Sci.D. Professor (RETIRED)

AT Federal University of Rio de Janeiro (UFRJ)

Copyright 2011, SBGf - Sociedade Brasileira de Geofísica

This paper was prepared for presentation during the 12th International Congress of the Brazilian Geophysical Society held in Rio de Janeiro, Brazil, August 15-18, 2011.

Contents of this paper were reviewed by the Technical Committee of the 12th International Congress of the Brazilian Geophysical Society and do not necessarily represent any position of the SBGf, its officers or members. Electronic reproduction or storage of any part of this paper for commercial purposes without the written consent of the Brazilian Geophysical Society is prohibited.

Abstract

This article does not embody a gravitational radiation theory aneoug masses. Rather, it is a proposition, whose root is a reenfiting of the Universal Gravitational Cosntant in Plancr's units, which establishes the lowernost scale of its range. Therefore, no quaxtum gravity concepts will come into play; the physics is newtonian throuyhout. Nevertheless, the key provided by the constat's rewfiting, aplied to the simplest scenario, that of two at fist: masses, allows to recogrise that gravity interlocking tollows a P-type oscillation at very high frequencies, whether the medium is vacuum – the highest – or not.

Introduction

The Pioneer Newton's formula for the gravitational attraction anong bodies, once applied to two honeogeneous, at rest masses (M, m), separated by a distance (r) between their centers, asserts that a force (F) literally expressed as

$$F \propto \frac{M \cdot m}{r^2}$$
(1)

binds the two masses. Mand m may attain defferent values, the médium beingvacuum, or not. F has only been quantified about 80 years later, by Cavendish, after his insertion, in the literal formula, of the dimensionally – numerical coefficient G, (He) obtaired from a delicate labs experiment. Since then, one orites

$$F = G \cdot \frac{M \cdot m}{r^2}$$
(2)

where $G\approx \frac{2}{3\cdot 10^{10}}\,N\cdot m^2\,/\,s^2\,, \qquad \text{called}\qquad \text{Universal}$

Gravitational Constant, for being valid at any scale and at any medium.

In the MKS system $N = kg \cdot m / s^2 N$; therefore G may also be expressed as

$$G \approx \frac{2}{3 \cdot 10^{10}} \frac{(m/s)^2}{kg/m}$$

a ratio between a velocity squared and a mass oren length bradient. Since gravity transmission speed in vacuum equals $c=3\cdot 10^8 \, \text{m/s}$, it becomes more comprehensive to rewrite

$$G \approx \frac{c^2}{1.35 \times 10^{27}} \text{ (MKS units)}$$

Now G is an universal constant at any medium: c. an universal Constant in vacuum; so, for vacuum, 1.35×10^{27} kg/m will also be an universal constant: it could range from 1.28×10^{43} kg/light year, at one extreme, to M_p/L_p at the sowermost, where $M_{p} \approx 2.2 \times 10^{-8}$ kg and $L_{P} \approx 1.6 \times 10^{-35}$ m are identified as the "quatum" of mass and the "quatum" of space, after Planck (BIB. 1). It is a fact that the G value is immutable, the medium being vacuum, or not. In gravity prospectong, be it performed on land, sea or airborne, the formula deduced to compute survey's corretion (like "free-air", "bouguer", etc.) and for depths'evolution of sub-sun face "anomalieis", the constang of G is unquestionable. Nevertheless, at non-vacuum midia, a new value (c) has to be introduced for gravity transmission velocity: \overline{c} < c. This requires, then, that a new denominator has

to applied to (3); in the case of waters, p.ex., $\overline{c} < 0.33 \times c$ (BIB.2) which requires $\overline{M_P} / L_P = (0,33)^2 \times \frac{M_P}{L_P}$. Since M_P cannot be below

the planck limit of 2.2×10^{-8} kg a new $\overline{L}_P \approx \frac{L_P}{(0.33)^2} \approx 10 \cdot L_P$ has to be introduced to tain the constany of G.

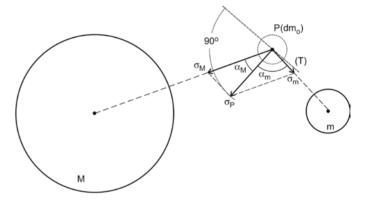
Gravity transmission: a Proposition

It has already been assumed that gravity transmission folows some of the rules that belong to electro-magnetics, mainly a speed c in vacuum and lower ones through non-vacuum media.

Gravitational intensities at an external point P, $g_M = G \frac{M}{r_M^2}, g_m = G \frac{m}{r_m^2}$ are directed orthogonally to the

surfaces $4\pi r_M^2$ and $4\pi r_m^2$, that cross at P (figure 1, a 2D X-section of the plane containning P and points P₁ and P₂, that belong to líne O₁O₂).

an invariant (for this reason, in figure 2, k is omitted).The force equation for equilibrium at P


 $\sigma_{M} \cdot dS \cdot \cos \alpha_{M} + \sigma_{m} \cdot dS \cdot \cos \alpha_{m} = \sigma_{P} \cdot dS$

becomes simply

 $\sigma_{\rm M} \cdot \cos \alpha_{\rm M} + \sigma_{\rm m} \cdot \cos \alpha_{\rm m} = \sigma_{\rm P}$ (6) And

 $\sigma_{\rm M} \cdot {\rm sen}\,\alpha_{\rm M} - \sigma_{\rm m} \cdot {\rm sen}\,\alpha_{\rm m} = 0$ (7)

since no tangencial stress is present.

Note: (T) is the local direction of the equipotential surface through P; being σ_P perpendicular to it, at P, no tangencial component will there exist. Infinitesimal sphere dm_o represents P.

Figure 2

Conclusions

We are not dealing, in this article, with any gravity sudden-disturbance pull: the two-mass scenario is static. Masses are at rest. What is perseved is the mechanical parameters that mold the gravity permanent signal between two bodies within any medium. As seen, g_M and g_m propagate as normal stress pulses, independently of each other, rather, cooperating, never interfering, in spite of their opposite directions of travel. This interlocking causes a permamency of a force: M at one end, m at the other, function as gravity "sinks", not sources. The minimum separation that allows a force to manifest it self would be (see figure 3) equal to $2 \cdot L_P \approx 3.2 \times 10^{-35} \text{ m}$ in vacuum; any other separation will be a multiple of 3.2×10^{-35} m. The fundamental wavelength will then be $\lambda_0\approx 3.2\!\times\!10^{-35}\,m\,,$ and the fundamental frequency,

Figure 1

By being directed orthogonally to the referred surfaces, gravitational intensities differ from electromangnetic ones, since these incorporate an s-type oscillation; g's are exclusively P-type, no tangencial component exist at any point of the $4\pi r_M^2$ and $4\pi r_m^2$ surfaces. In fact, by definition, at any mass-point (dm_o) on the surface surroending the pair of masses M and m (figure2), gravitational intensities are

$$g_{M} = \frac{dF_{M}}{dm_{o}} = \frac{dF_{M}}{dS} \cdot \frac{ds}{dm_{o}} = \sigma_{M} \cdot k$$
$$g_{m} = \frac{dF_{m}}{dm_{o}} = \frac{dF_{m}}{dS} \cdot \frac{dS}{dm_{o}} = \sigma_{m} \cdot k$$

which directly correlate them to normal stresses (G) at P; k is not a number, has dimensions $\left[L^2M^{-1}\right]$, but it is

 $f_0\approx 3\times 10^8\,/3.2\times 10^{-35}\approx 10^{43}\,Hz$, which places gravity

transmision at the very top of the radiation spectrum. The P pulses occur as assymetric senoidal-like signals (in figure 3, the use of step-like bursts, instead of spike-like ones, has no conceptual significance). Within non-vacuum media, $\overline{c} < c$; then $\overline{\lambda} > \lambda_o$ and $\overline{f} << f_o$, as

needed to keep G constant (again, in water medium, $\overline{\lambda} \approx 10 \cdot \lambda_o \approx 32 \times 10^{-35} m$ and

 $\overline{f} \approx 0.03 \cdot f_0 \approx 3 \times 10^{41} \text{Hz}$).

Acknowledgments

To Geneci Coelho, geophysics technician at the Petrophysics Lab. of the Geology Department, UFRJ, for the preparation of the first draft. To Prof. R. Herman Plastino for providing the Mala Geoscience data. To EDITORA INTERCIÊNCIA, for its cooperation in the assemblage of the final draft.

Bibliography

Jose Leão de Luna-2011-"Unidades de P/anch" (in Portuguese, to fulfill requirement of the discipline" Equações diferenciais aplicada às Geociências") IGL-742, at UFRJ).

Mala Geoscience (chapter 12) - 2002 - GPR Manual

Figure 3