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Abstract

Full-waveform inversion (FWI) is a data fitting
procedure that relies on the collection of seismic
data volumes and sophisticated computing to create
high-resolution models. With the advent of FWI,
the improvements in acquisition and inversion have
been substantial, but these improvements come at
a high cost because FWI involves extremely large
multi-experiment data volumes. The main obstacle is
the ‘curse of dimensionality’ exemplified by Nyquist’s
sampling criterion, which puts a disproportionate
strain on current acquisition and processing systems
as the size and desired resolution increases. In this
paper, we address the ‘curse of dimensionality’ by
using randomized dimensionality reduction of the FWI
problem, coupled with a modified Gauss-Newton (GN)
method designed to promote curvelet-domain sparsity
of model updates. We solve for these updates using
the spectral projected gradient method, implemented
in the SPG`1 software package. Our approach is
successful because it reduces the size of seismic
data volumes without loss of information. With this
reduction, we can compute Gauss-Newton updates
with the reduced data volume at the cost of roughly
one gradient update for the fully sampled wavefield.

Introduction
As we reported in earlier work (Li and Herrmann, 2010),
the cost of computing gradient and Newton updates is
one of the major impediments preventing the successful
application of FWI to industry-size data volumes. The
cost of computing the gradient depends on the size of the
data and on the discretization of the Helmholz operator,
while Newton updates are difficult because the Hessian of
FWI is dense and possibly indefinite (negative eigenvalues).
Finally, FWI is both overdetermined (there are more datums
than unknowns), and underdetermined, (there is a finite
aperture and hence ’shadow zones’), so FWI requires prior
information (Symes, 2008).
To address these issues, the classic nonlinear least squares
FWI formulation (Tarantola, 1984; Pratt et al., 1998) is
regularized by an attractor term, which penalizes the two-
norm difference between an initial model guess for the
model and the estimated model, or by total variation, which
penalizes fluctionals to bring out discontinuities (Akcelik et al.
(2002); Virieux and Operto (2009)). In contrast to these

methods, we do not append any extra terms to the FWI
objective, but instead we regularize the model updates to be
sparse in the curvelet frame (Herrmann et al., 2008), which
is known to provide compressible representations of models
that are smooth except for discontinuities/wavefronts along
piece-wise smooth curves. By promoting curvelet-domain
sparsity for the updates, we exploit theoretically optimal
decay for the magnitude-sorted curvelet coefficients for
velocity distributions that contain singularities (modeled by
zero-, first, and fractional-order discontinuities (Herrmann,
2003; Herrmann et al., 2001)) with conflicting dips. These
updates are also compressible in the curvelet domain
because they are the result of multidimensional correlations
between the source and residual wavevields and curvelets
are known to represent wavefields sparsely (Candes and
Demanet, 2004).
To use these two properties, we modify the standard
Gauss-Newton subproblem (Nocedal and Wright, 1999) of
FWI by adding a sparsity-promoting `1-constraint. These
sparsity-promoting subproblems are solved using the SPG`1
program (SPG`1 - Berg and Friedlander, 2008), which is
implemented in a matrix-free manner specifically designed
for large-scale problems. Aside from serving as a powerful
prior, our sparsity-promoting modification also connects
to recent insights from Compressive Sensing (CS in
short throughout the paper, Candès et al., 2006; Donoho,
2006), where it is shown that compressible signals can
be recovered from severely sub-Nyquist sampling rates
by solving a sparsity promoting (`1) program. The key
contribution of CS is that it provides precise and concrete
design principles and theoretical performance estimates
for one-norm based recovery, which have let to major
paradigm shift in signal/image processing (see e.g. , the
IEEE special issue on CS) or (Herrmann, 2010). As
shown in Herrmann et al. (2009b), simultaneous/continuous
acquisition (Beasley, 2008; Berkhout, 2008), can be seen
as instances of CS. Apart from having an impact on
seismic acquisition, we use this identification to make
computations more efficient in the context of wavefield
simulation (Neelamani et al., 2008; Herrmann et al., 2009b),
imaging (Romero et al., 2000; Herrmann and Li, 2011),
and FWI (Krebs et al., 2009; Herrmann et al., 2009a).
In these approaches, conventional sequential impulsive
sources are replaced by a limited number of simultaneous
‘phase-encoded’ sources, which reduces the number of
right-hand sides, and hence the computational complexity
of wavefield simulations and on-the-fly computations of the
gradient and reduced Hessian of FWI.
In random phase-encoding, where all sources fire
simultaneously with random weights, coherent crosstalk
turns into Gaussian noise, as in CS. This opens the
possibility to approximate Gauss-Newton updates by solving
a sparsity-promoting program on a reduced system. We
gain provided costs of solving the sparsity-promoting
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program are smaller then the cost of computing GN updates
for the complete system (Li and Herrmann, 2010). In
this way, we overcome the problem of prohibitive costs of
computing GN updates by using simultaneous sources as
a dimensionality reduction technique, randomly resampling
the sources at each linearization. By drawing new
simultaneous sources after each linearization, we remove
possible bias and thus increase the accuracy of our solution
while still working with a dimensionality reduced data volume
at every iteration. This feature is essential for large-scale
geophysical problems.

Dimensionality reduction by compressive sampling
Full-waveform inversion (FWI) involves the solution of
the following multi-experiment unconstrained optimization
problem:

min
m

1
2K

K

∑
i=1
‖bi−F i[m,qi]‖2

2, (1)

with K = n f × ns the batch size, given by the total number
of monochromatic sources qi (n f , ns are the total number
of frequencies and source experiments). The vectors bi
represent the corresponding vectorized monochromatic
shot records and the F i[m,qi] = PH−1[m]qi represents the
monochromatic forward operator for the ith source, with
P the detection operator, resticting data to the receiver
positions. For simplicity, we assume a fixed receiver array.
We also neglect surface-related multiples by using an
absorbing boundary condition at the surface.
Unfortunately, the solution of the above minimization
problem with Newton, Gauss-Newton, or Quasi-Newton
techniques is extremely costly because each update
requires multiple iterations involving the solution of the
forward and time-reversed (adjoint) Helmholtz system for all
n f frequencies and all ns sources. We address this problem
by combining dimensionality-reduction strategies with
recovery based on sparsity promotion. More specifically, we
reduce the number of sources, and hence the number of
the Helmholtz solves by replacing Eq. 1 with

min
m

{
1
2
‖RM(b−F [m,q])‖2

2 =
1
2
‖b−F [m,q]‖2

2

}
. (2)

In this expression (the min runs over the expressions within
the brackets), the vectors b, q contain all monochromatic
sources and shot records, and F [m,q] is the corresponding
modeling operator for all monochromatic shots. We
calculate the dimensionality-reduced counterparts of these
quantities (denoted by the underbar), via b = RMb, q =
RMq, and F [m,q]. After applying this operator, ns
sequential monochromatic sources are combined into n′s�
ns supershots. Each supershot is given by a random
superposition of all shots. A different random subset of
n′f � n f frequencies is used for each supershot.
Mathematically, this means that each simultaneous-source
experiment in the collection of supershots is given by a
different restriction. The ith block of this restriction matrix
R is given by the Kronecker product: Ri := RΣ

i ⊗ I⊗RΩ
i for

i = 1 · · ·n′s. The restriction selects one supershot and the
subset of frequencies. The measurement matrix M is given
by the Kronecker product M := MΣ⊗ I⊗ I, where MΣ, acting
along the source coordinate uses Romberg (2009)’s phase
encoding as in Lin and Herrmann (2007).
The identity in Eq. 2 follows from linearity of randomized
subsampling by RM and from linearity of forward modeling

operator w.r.t. the sources. As a consequence, the number
of PDE solves required in Eq. 2 is reduced by a factor of
K′/K with K′ = n′s×n′f (see also Herrmann et al., 2009b, for
details). However, this speed up comes at the expense of
creating artifacts that are related to source crosstalk and the
key question is to find a solver that mitigates these artifacts.

Replacing Gauss-Newton subproblem with sparsity
promoting formulation: A common approach to solving
FWI (or in our case, the subsampled FWI problem) is
the Gauss-Newton method, where at each iteration an
update δm is obtained by solving the following least-squares
subproblem

min
δm
‖δb−∇F [m,q]δm‖2

2, (3)

with δb = b−F [m,q] the dimensionality reduced data
residue and ∇F the reduced Jacobian—i.e., the linearized
Born scattering operator for simultaneous sources. As in
any Gauss-Newton method for FWI, the reduced Hessian
in this formulation can be interpreted as ignoring internal
multiple reflections present in the true Hessian (Pratt et al.,
1998). To avoid additional complications, we assume our
data to be surface-multiple free.
To mitigate source crosstalk and ill conditioning of the
reduced Hessian, we add sparsity-promoting constraints
to recover sparse updates for the linearized subsampled
FWI problem Eq. (3). Specifically, given a sparsifying
transform S with adjoint SH (curvelets), we compute the
update δm = SHδx (with H denoting the adjoint). We obtain
curvelet coefficient vector for the updates δx by solving the
so-called LASSO problem

min
δx

‖δb−∇F [m,q]SHδx‖2
2 s.t. ‖δx‖1 ≤ τ, (4)

with τ chosen automatically by the algorithm. The LASSO
problem is more difficult to solve than the least square
subproblem (cf. Eq. (3)), but we can afford to do this on
the dimensionality-reduced problem. The key idea is that
the constraint ‖δx‖1 ≤ τ favors updates δm that are sparse
in the curvelet domain. Because GN updates are sparse in
the curvelet-domain, solving the LASSO problem removes
the crosstalk and restores the amplitudes because it selects
the largest curvelet coefficients that lie above the crosstalk
noise level.

1: initialize m, k← 0.
2: for j = 1 : number of frequency bands do
3: while not converged do
4: Randomly subsample to obtain δbk,qk.

5: δ x̃←

{
argmin

δx
‖δbk−∇F [mk,qk]SHδx‖2

2

s.t. ‖δx‖1 ≤ τk,

}
6: mk+1←mk +SHδ x̃
7: k← k +1
8: end while
9: end for

Algorithm 1: Modified GN-method for FWI with sparse
updates

Solving the LASSO Subproblem: In order to solve (4),
we use the spectral projected gradient (SPG) algorithm
implemented in SPG`1 (Berg and Friedlander, 2008). At
each iteration, the algorithm computes the gradient of the
least squares objective in (4), and then obtains a modified
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direction by projecting this gradient onto the set {δx : ‖δx‖≤
τ}. We use the SPG method as our computational kernel to
compute the updates (see Algorithm 1).

Pareto Curve: In Algorithm 1, we solve a series of LASSO
problems for different linearizations. It is also essential
to draw new collections of supershots after each LASSO
subproblem has been solved (Li and J.Herrmann, 2010; Li
et al., 2011; Herrmann and Li, 2011). Each subproblem
also requires a parameter τk as the constraint on the `1-
norm of the update. The series of τk parameters for each
kth subproblem are picked automatically by the SPG`1
algorithm using the tradeoff curve between the optimal value
of the misfit and the sparsity level τ. Specifically, consider
the optimal value function

vk(τ) = min
δx

{
‖δbk−∇F [mk,qk]SH

δx‖2 s.t. ‖δx‖1 ≤ τ

}
.

Given τ and data for the k-th iterate, the value vk(τ) is
immediately obtained as the square root of the minimum
value of the LASSO problem with the τ constraint. The curve
traced out by vk(τ) as τ varies is shown to be differentiable
w.r.t. τ (Berg and Friedlander, 2008), and dubbed the Pareto
curve (see figure 1). Steepness of the Pareto curve reflects
the ability to make progress in the optimization for small
increases in τ. The SPG`1 algorithm therefore sets

τk =
‖δbk‖2−σ

−v′k(0)
,

the ratio of the current misfit to the slope of the Pareto curve
at the origin. The parameter σ in the above expression
is a noise level, which serves as a minimum value for the
linearlized misfit that we would ever want to aim for. In the
experiments presented below, we set σ = 0. The derivative
of the origin has a closed form expression:

v′k(0) =−‖∇F H
δbk‖∞ ,

where ∇F H is the adjoint of the Jacobian at the current
iterate, and ‖w‖∞ is the element-wise maximum of the
absolute values of w. For a more thorough treatment of the
ideas related to the Pareto curve see (Berg and Friedlander,
2008) and (Hennenfent et al., 2008).

Example
To demonstrate the performance of our algorithm, we run
a series of experiments on the 2-D BG model plotted in
Fig. 2(a). All simulations are carried out with 350 shot
positions sampled at a 20m interval and 701 receiver
positions sampled at a 10m interval, yielding an maximum
offset of 7km. We used a Ricker wavelet with a central
frequency of 12Hz. The time record has a duration of 2.4s
and is sampled with a sample interval of 16ms. To improve
convergence, the inversions are carried out sequentially in
10 overlapping frequency bands on the interval 2.9−22.5Hz
(Bunks et al., 1995), each using 7 different simultaneous
shots and 10 selected frequencies—i.e., K′ = 70. For each
subproblem, we use roughly 20 iterations of SPG. Hence,
we obtain LASSO updates at a cost roughly equivalent to
one tenth of the cost of a gradient calculation with all of the
sources (K = 17500). As a starting model, we use a velocity
profile obtained by smoothing the original model (plotted in
Fig. 2(b), followed by horizontal averaging.
The result after ten LASSO iterations for each frequency
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Projected gradient. Our application of the SPG algorithm to solve (LSτ ) follows
Birgin, Mart́ınez, and Raydan [5] closely for the minimization of general nonlinear
functions over arbitrary convex sets. The method they propose combines projected-
gradient search directions with the spectral step length that was introduced by Barzilai
and Borwein [1]. A nonmonotone line search is used to accept or reject steps. The
key ingredient of Birgin, Mart́ınez, and Raydan’s algorithm is the projection of the
gradient direction onto a convex set, which in our case is defined by the constraint
in (LSτ ). In their recent report, Figueiredo, Nowak, and Wright [27] describe the
remarkable efficiency of an SPG method specialized to (QPλ). Their approach builds
on the earlier report by Dai and Fletcher [18] on the efficiency of a specialized SPG
method for general bound-constrained quadratic programs (QPs).

2. The Pareto curve. The function φ defined by (1.1) yields the optimal value
of the constrained problem (LSτ ) for each value of the regularization parameter τ .
Its graph traces the optimal trade-off between the one-norm of the solution x and
the two-norm of the residual r, which defines the Pareto curve. Figure 2.1 shows the
graph of φ for a typical problem.

The Newton-based root-finding procedure that we propose for locating specific
points on the Pareto curve—e.g., finding roots of (1.2)—relies on several important
properties of the function φ. As we show in this section, φ is a convex and differentiable
function of τ . The differentiability of φ is perhaps unintuitive, given that the one-
norm constraint in (LSτ ) is not differentiable. To deal with the nonsmoothness of
the one-norm constraint, we appeal to Lagrange duality theory. This approach yields
significant insight into the properties of the trade-off curve. We discuss the most
important properties below.

2.1. The dual subproblem. The dual of the Lasso problem (LSτ ) plays a
prominent role in understanding the Pareto curve. In order to derive the dual of
(LSτ ), we first recast (LSτ ) as the equivalent problem

(2.1) minimize
r,x

‖r‖2 subject to Ax + r = b, ‖x‖1 ≤ τ.
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Fig. 2.1. A typical Pareto curve (solid line) showing two iterations of Newton’s method. The
first iteration is available at no cost.

vk(τ) =

�
min
δx

�δbk −∇F [mk,q]δx�2
s.t. �δx�1 ≤ τ

�
�δbk�2

σ

τk =
�δbk�2 − σ

−v�
k(0)

Figure 1: Pareto curve describes the tradeoff between the
norm of the misfit and the sparsity parameter τ. A given
value of τ determines the value function v1(τ) as the solution
to the corresponding LASSO problem. The curve is used to
automatically select the value of τk at the k-th iteration.

band is depicted in Fig. 2(c). Since we do not use a line
search, we never evaluate the misfit for all sources. The
cost of ten LASSO iterations is then roughly equivalent to
one evaluation of the full misfit. This gives us an order of
magnitude speed up.
As we can see from Fig. 2(c), the inversion result is able to
capture all the discontinuities in the model up to a resolution
commensurate the frequency range over which we carried
out the inversion. Our results benefit significantly from
supershot renewals after solving each LASSO subproblem,
since these renewals remove the bias that would occur if
we used a fixed collection of supershots during the entire
procedure. Because of space limitations, we can not include
our inversion result without renewals. We are also not able
to show the sparsity-promoting result for all data because
this is computationally infeasible. However, the experiments
shown here demonstrate that our results are competitive
with quasi-Newton methods applied to the entire data.

Conclusions
We introduced an efficient algorithm to solve FWI,
incorporating randomized dimensionality reduction into
a modified Gauss-Newton method with sparse updates.
Our method also uses techniques from stochastic
optimization (Haber et al., 2010). In effect, we
turn ‘overdetermined’ Gauss-Newton subproblems into
underdetermined dimensionality-reduced subproblems with
sparsity promotion. The resulting method is computationally
efficient, as it works on a reduced data volume with fewer
monochromatic source experiments. Our method also
exploits natural sparsity of the updates in the curvelet
domain, which acts as a powerful prior regularizing the
inversion of the linearized subproblems.
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Figure 2: Full-waveform inversion result. (a) Initial model. (b) True model. (c) Inverted result starting from 2.9Hz with 7
simultaneous shots and 10 frequencies.
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