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Abstract  
 
We present a Finite Differences implementation of the 
2D elastic wave equation. Our methodology makes 
use of both a staggered and a rotated grid, combining 
the stability and low phase dispersion of the two 
methods. The numerical simulation is done in the 
frequency domain, which allows us to easily 
implement an efficient boundary condition (PML) and 
enables the simulation of many sources 
simultaneously. We apply a compressed sparse 
matrix solver (LAPACK) and a vertical/horizontal 
displacement formulation in order to decrease the 
matrix demand for the implicit method. Results show 
the modeled snapshots in the time and frequency 
domains, which can be used as input for any seismic 
imaging process such as migration or Full Waveform 
Inversion. 

 

Introduction 
 
Seismic imaging is the main tool in exploration 
geophysics to model and interpret subsurface data. 
Nowadays, many techniques comprise our set of imaging 
tools, but some methods, such as Reverse Time 
Migration, Full Waveform Inversion and other wave 
propagation methods have gained importance due to their 
ability to handle complex geologies. Therefore, the ability 
to properly propagate seismic waves is crucial for the 
development and application of modern seismic tools. 
 
However, traditional acoustic modeling may not be 
sufficient for a correct estimation of the forwardly 
propagated wavefield when the correct reflection 
amplitudes need to be predicted. Also, this type of 
modeling doesn´t account for converted waves, which 
arise in compressional and shear waves for 
discontinuities in the medium and which have become 
more important with the widespread use of 
multicomponent data. In these cases, the full elastic wave 
equation must be solved. 

 
Numerical solutions in the frequency domain can be 
advantageous when solving the elastic wave equation 
(Liao, 2009). However, care must be taken when 
implementing these solutions, mostly due to dispersion 
and computational costs. Amongst the many proposed 
methodologies for implementing finite difference 
modeling, we highlight the works by Stekl and Pratt 
(1998), Jo et al. (1996) and Liao et al. (2009). 
 
Our approach to the problem of modeling the elastic 
equation was based on a combination of these different 
methods, taking advantage of their strengths in order to 
implement a reliable, computationally efficient (both in 
memory cost and processing time) algorithm that can be 
used for the computation of synthetic seismograms and 
as an input for inversion schemes, specially for Full 
Waveform Inversion. 

 

Methodology 
 
The first step of our approach uses the viscoelastic wave 
equations in a heterogeneous 2D medium 
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Where λ and µ are the Lamé parameters, u and v 
represent the horizontal and vertical components of the 
displacement vector, ρ stands for density, ω corresponds 
to the angular frequency and f and g symbolize body 
forces. 
 
Before discretizing equations (1) and (2), Stekl and Pratt 
(1998) extended the idea introduced by Jo et al. (1996) 
for the viscoacoustic case, where a 45 degree rotated 
coordinate frame is used in order to enhance the 
accuracy of the finite-difference approximation. 
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To obtain the equations in the rotated frame, we use their 
relationship with the standard coordinate system, which 
leads us to 
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With the aim of reducing numerical anisotropy, we write 
the viscoelastic equations as a linear combination of the 
two systems 
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Where P1 and P2 are the standard horizontal and vertical 
representation of the Laplacian operator, respectively, 
while Q1 and Q2 stand for the 45 degree rotated horizontal 
and vertical representations. The relative weight between 
standard and rotated grids is given by the coefficient a, 
which Jo et al. suggested to be searched in the region 0 ≤ 
a ≤ 1. 
 
At this point, it is possible to apply the second-order finite 
difference scheme for the partial derivatives found in Kelly 
et al. (1976). For the rotated frame, the necessary 
approximations can be found in Stekl and Pratt (1998). 
 
Although we have already described one strategy to 
minimize the amount of numerical anisotropy, we set now 
another approach proposed by Jo et al. (1996) to reduce 
the overall numerical dispersion. To do that, we employ 
the lumped formulation, which uses the interpolation of 
the field values from the nearest node points and this 
interpolation is weighted by the density. Combining this 
with the consistent formulation, which approximates the 
density and fields to their values at each node, the 
approximation for homogeneous media becomes 
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for horizontal displacement. In equation 6, the coefficient 
b is chosen to minimize the numerical errors.  
 
Before applying the discretization together with equations 
5 and 6 in equations 4 and 3, we employed PML 
absorbing boundary conditions to attenuate the reflections 
whenever the wavefield reaches the model’s boundaries. 
This process leads us to the finite-difference matrix 
equation: 
 

   iii fUA = . 7 

 
Where Ui is a vector containing the displacement 
components, fi is the source term and Ai is the coefficient 
matrix which is formed by 2x2 matrixes. Ai is a massive 
sparse and banded matrix with dimensions of (2×nx×nz) × 
(2×nx×nz). 
 

Results 

 
Verification of our modeling scheme was based on Liao et 
al. (2009), where a homogeneous model was used. The 
modeling parameters can be found in table 1. 

 

 

Shear wave velocity 1333.3 m/s 

Compressional wave 
velocity 

2000 m/s 

Density 2.073095 g/cm3 

Time interval 0.001 s 

Time samples 1024 

Grid point interval 5 m 

Model dimensions X and Z 200 x 200 grid points 

Cutoff frequency 40 Hz 

 Table 1: Modeling parameters 

 

 
For the PML boundary we add 40 grid points to each of 
the four sides of the model. Equation 7 is solved for 
several frequencies (1 – 41 Hz) and the inverse Fourier 
transform is applied in order to obtain the wavefield in the 
time domain. 
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Figure 1: Snapshot of the horizontal displacement for 24 
Hz. 

 

Figure 2: Snapshot of the vertical displacement for 24 Hz. 

 

Conclusions 
 

The modeling results obtained agree with those present in 
the literature, which demonstrates that the rotated grid 
and lumped formulation approaches can be combined 
into a single strategy to reduce dispersion and numerical 
anisotropy. 

The matrix formulation based on the vertical and 
horizontal displacements significantly decreases the 
memory demands when compared to a velocity-stress 
formulation of the elastic wave equation, which would 
require the solution of a (5×nx×nz) × (5×nx×nz). This 
decrease is essential for any application of this modeling 
step in an inversion scheme, such as FWI. 

 

Figure 3: Snapshot of the horizontal displacement at 192 
ms. 

 

Figure 4: Snapshot of the vertical displacement at 192 
ms. 
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