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Abstract 

A new data regularization method to generate common-
offset data using a local operator is presented. The 
regularization is achieved in two steps: migration with 
proper weight function to compensate irregularities, and 
demigration for the desired source-receiver configuration. 
Two field data examples are presented, one 2D and 
another 3D.  In both cases, gaps due missing traces are 
properly filled.

Introduction

Several seismic processing algorithms are implemented 
assuming a regular spatial distribution of sources and 
receivers, such as any wave–equation migration. In 
general, seismic acquisition is planned considering a 
regular geometry, but in practice the planned 
configuration is almost impossible to be exactly achieved. 
The most popular seismic data regularization algorithm 
used in seismic processing involves a binning procedure 
associated with summation after AMO (Azimuth Moveout 
correction). In areas without structural complexity and 
with smooth velocity variation, reasonable results are 
obtained using partial NMO correction.

Kirchhoff migration is one of the imaging procedures that 
permit to handle with irregular distribution of sources and 
receivers in a natural way. Two aspects have to be 
considered to properly image irregular data with Kirchhoff 
algorithms: the use of the exact position of the source and 
receiver for traveltime computation and the use of a 
proper weight function during the integration, in order to 
compensate irregular spatial distribution of seismic traces. 

The data regularization scheme explored in this article is 
based in a very simple and intuitive idea: migrate the 
irregular data by means of a proper designed Kirchhoff 
algorithm, and then demigrate the regular image to the 
desired source-receiver configuration. Although this 
intuitive algorithm is easily adapted to different source-
receiver configuration, it demands high computational 

effort and requires a good approximation of the velocity 
field. I escape from these problems by making use of 
local coordinate systems to define local operators and 
perform integration.

The theoretical aspects involving amplitude preservation 
in Kirchhoff migration have been extensively investigated 
in the last decades. All the concepts and principles used 
in this article are extensively explored by Hubral  et. al 
(1996), and the kinematics and dynamics aspects related 
to the combination of migration and demigration integrals 
are discussed by Tygel et. al (1996).

For simplicity, all the pictures introducing concepts or 
describing methodology are 2D. In spite of this fact, the 
proposed data regularization method is fully 3D.

The data regularization method

The objective of the proposed method is the construction 
of common azimuth volumes with constant offset. The 
input data is a set of seismic traces with an irregular 
spatial distribution of midpoints, and with offsets and 
azimuths varying in a selected range. Figure 1 illustrates 
how the proposed method works. The input traces are 
plotted in dark-gray, while the output traces are plotted in 
black. Observe that the input data have an irregular 
distribution of midpoints and contains traces with different 
offsets. After the regularization, traces are located at the 
desired midpoints location and have a unique offset.

Figure 1. Construction of common-azimuth gathers with constant 
offset by means of data regularization. The input seismic traces 
are plotted in dark-gray wiggle and the output ones in black. The 
graphic above shows the offset distribution before (dark-gray) 
and after (black) data regularization. The synthetic traces are 
modeled considering a dip reflector in a homogenous media.
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The construction of common-azimuth volumes with 
constant offset is achieved by means of two Kirchhoff-
type integration procedures: migration and demigration, 
being both of them performed with operators defined in 
the local isochron coordinate system.

The basic idea:

Let’s take a seismic trace of the common-azimuth section 
to be constructed, and consider its location as a reference 
position. The construction of that seismic trace assumes 
the existence of a virtual source-receiver pair with a 
reference offset, and can be achieved by following the 
sequence:

1. Select a set of input traces whose midpoints are 
inside a given aperture.

2. Create an empty depth migrated section to 
accumulate the contribution of input traces.

3. Migrate each input trace by properly weighting 
and distributing its amplitudes along specifics 
isochron curves in depth migrated section.

4. Demigrate the obtained migrated depth section 
by stacking amplitudes collected along the 
isochron curve defined for virtual source-receiver 
pair, this particular isochrone is denominated 
demigration stacking line.

Figure 2 illustrates the algorithm described above. 
Observe that all isochrones are tangent to the reflector at 
the point M, which is the stationary point of both migration 
and demigration integrals. It is important to highlight that 
the described sequence is an algorithm to generate just 
one seismic trace. For a complete common-azimuth 
section, the sequence has to be repeated as many times 
as the number of output traces.

The local isochron migration coordinate system: 

A local coordinate system can be established by 
considering a set of isochron curves associated with the 
virtual source-receiver pair. These isochrones and its 
orthogonal lines form a curvilinear grid that can be used 
as coordinate system. The first isochrone is associated 
with the smallest traveltime for the given virtual source-
receiver pair, which corresponds to the trajectory of the 
direct wave from the source to the receiver. As the first 
isochrone is a line connecting the virtual source-receiver 
pair, all orthogonal lines have their origin in somewhere 
between the source and the receiver, in such a way that 
the position of the origin can be used to discriminate each 
orthogonal gridline. As the offset distance of the reference 
source-receiver pair varies, the relative position of each 
orthogonal gridline origin can be used to identify it. 
Regardless of the reference offset, the relative position is 
a number between  -1 and 1.  From here, I assume the 
notation used by Silva and Sava (2009), and refer to 
these orthogonal lines as isochron rays.

Figures 2 and 3 together explain how the proposed data 
regularization method works. While Figure 2 summarizes 
the main idea in depth domain, Figure 3 reproduces the 
process in the local isochron coordinate system, where 
the horizontal coordinates are the relative position of 
isochron rays origins, and the vertical coordinates are the 
reflection time. Observe two relevant aspects related to 
the migration and demigration procedures in the local 
domain: all migration isochones are tangent to the 
reflector at the point M’, and the demigration stacking line 
is horizontal.

The computational effort is severely reduced when the 
two steps are performed in the local domain, first because 
the number of grid points used to generate a migrated 
image is considerably smaller in the migration step, 
second because the demigration step becomes a simple 
horizontal stack.

Figure 2:  Data regularization scheme for the position of 
horizontal coordinate 2000. Considering the source-receiver pair 
SG, in green color, the set of isochrones and its orthogonal lines, 
in red, form a curvilinear coordinate system. The black traces in 
seismogram above represent the input data, while the green 
trace is the constructed output. The black curves below are the 
isochrones where the amplitudes of input traces are distributed 
after migration. The blue line represents a reflector in depth 
domain, while the green isochrone is the demigration stacking 
line, in which the integrated amplitudes has to be collected in 
demigration step. Obeserve that all lines in depth domain are 
tangent at the point M.

Figure 3:: Data regularization scheme in local isochron migration 
coordinate system. The black curves are the isochrones where 
the amplitudes of input traces are distributed after migration. The 
blue line represents a reflector in depth domain, while the green 
curve is the isochron where the integrated amplitudes have to be 
collected in demigration step. Obeserve that all lines in depth 
domain are tangent at the point M’.
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Data field example

The data field experiments consist of the application of 
the described regularization method in 2D and 3D 
datasets.

The 2D example consists of a seismic line with lack of 
traces due to acquisition problems. Figure 4 is a common-
offset section of this line, and Figure 5 is the same 
common-offset section after regularization in the local 
isochron migration coordinate system.

The 3D dataset consists of a pre-processed volume, in 
which standard techniques were applied and the final 
image was generated by a Kirchhoff PSDM algorithm. 
From this dataset, two subsets were selected, one of 
which being, the common-offset migrated image related 
to the offset 2600 meters, and another being input data 
for the migration.

The input data for migration was also used as input data 
for the proposed regularization method, generating a 
common-azimuth volume with constant offset of 2600 
meters. Then the common-azimuth volume was migrated 
with the same algorithm, using the same parameters and 
the same velocity model of the first time.

Figure 6 presents a comparison between the input data 
before and after regularization. Section A, on the left, is 
an inline extracted from the volume before regularization. 
Section B, on the right, is the corresponding inline after 
regularization. Observe that the proposed regularization 
method has the ability of generating missing traces, which 
is an inherent quality due to the migration step. In this 
case, the missing information comes from the neighbor 
lines.

Figure 7 permits to observe the benefits produced by the 
regularization before migration. Section A, on the left, is 
an inline extracted form the migrated common-offset 
image without regularization, while section B is the 
equivalent image using regularized data as input. Figure 8 
shows in detail a piece (above on the right) of the same 
sections. Observe that the image after regularization is 
much cleaner than the image without regularization.  

Conclusions

The construction of regular common-azimuth gathers with 
constant offset can be achieved in two steps: migration 
designed to deal with irregular geometry, followed by 
demigration for the desired regular configuration. The 
application of this two-steps algorithm using a local 

operator defined using a isochron coordinate system 
considerably reduces the computational cost of the 
algorithm.  
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Figure 4: 2D common-offset section after applying a partial NMO 
correction. 

Figure 5: 2D common-offset section after data regularization in 
local isochron migration coordinates.
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Figure 6: A: Common-offset section before data regularization. B: Common-azimuth section with constant offset after data regularization.

Figure 7: A: Common-offset depth migradted image without data regularization. B: Common-offset depth migrated image with data 
regularization.

Figure 8: Detail (upper-rigth quarter) of common-offset depth migrated images. A: without data regularization. B: with data regularization.
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