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Abstract  

 We present a method for inverting total-field anomaly for 

determining the framework of 3D magnetic sources such 

as: batholiths, dikes, sills, geological contacts, kimberlite 

and lamproite pipes. We use genetic algorithm with 

elitism to obtain magnetic sources’ frameworks and their 

magnetic features simultaneously. Specifically, we 

estimate the magnetization direction (inclination and 

declination), the total dipole moment intensity, and the 

horizontal and vertical positions, in Cartesian coordinates, 

of a finite set of elementary magnetic dipoles. The spatial 

distribution of these magnetic dipoles makes up the 

skeletal outlines of 3D geologic sources. 

 

Introduction 

 
Aeromagnetic and terrain surveys play an important role 

in the exploration of natural resources of economic 

interest, as well as in regional geologic mapping. The goal 

of magnetic prospecting is to infer, mainly through 

inversion, both the geometry and magnetization of the 

geologic structure that causes the observed magnetic 

anomalies. However, the solution of these inverse 

problems are non unique and some efforts are necessary 

to stabilize them. 

 

In the last decades, several inversion algorithms were 

developed to interpret magnetic anomalies, assuming that 

the basic source body is an inductively magnetized prism 

with no remanent magnetization. Bhattacharyya (1980) 

proposed a least-squares semiautomatic method of 

inversion to find the magnetization distribution in a three-

layer model constituted by contiguous prisms. To reduce 

ambiguity in the solution, this method allows fixing the 

depth of a particular prism. 

 

Different methods to constrain solutions also exist. For 

example, Last and Kubik (1983) used the concept of 

minimum volume to find a compact and structurally simple 

solution. Guillen and Menichetti (1984) adopted the 

minimum moment of inertia with respect to the center of 

mass. Zeyen and Pous (1991) used Bayes’s theorem to 

develop an algorithm that allows the inclusion of a priori 

information on model parameters. Their model consists of 

several right-rectangular prisms in which the unknown 

parameters are the depth to top and base, susceptibility, 

inclination, declination, and intensity of remanent 

magnetization. In the method of Li and Oldenburg (1996), 

the 3D region was discretized into a set of rectangular 

cells, each having constant susceptibility, and then the 3D 

distribution of susceptibility was inferred from inverting the 

magnetic data. Prior information can be incorporated into 

their objective function via a reference model and by 3D 

weighting functions that counteract the natural decay of 

the magnetic field with distance. Beiki and Pedersen 

(2011) describe a non-linear constrained inversion 

technique for 2D interpretation of high resolution magnetic 

field data along flight lines using a simple dike model. 

They first estimate the strike direction of a quasi 2D 

structure based on the eigenvector corresponding to the 

minimum eigenvalue of the pseudogravity gradient tensor 

derived from gridded, low-pass filtered magnetic field 

anomalies, assuming that the magnetization direction is 

known. Then the measured magnetic field can be 

transformed into the strike coordinate system and all 

magnetic dike parameters – horizontal position, depth to 

the top, dip angle, width and susceptibility contrast – can 

be estimated by non-linear least squares inversion of the 

high resolution magnetic field data along the flight lines. 

 

Our method estimates the 3D Cartesian coordinates of a 

set of elementary magnetic dipoles whose spatial 

distribution forms the skeleton of a homogeneous 

magnetic source. The method also provides a single 

direction of magnetization (declination and inclination) 

and a rough estimate of the magnetic dipole moment 

intensity of the magnetic source. To this end, we set the 

problem of minimizing an objective function that favors 

fitting the observed and the predicted data. In addition, we 

impose the condition of proximity between nearest dipoles 

by the minimum spanning tree problem. We set a graph 

and obtain the minimum spanning tree that connects the 

whole set of magnetic dipoles. Synthetic tests are done to 

validate the minimum spanning tree regularization 

approach. This hard non-linear inverse problem is solved 
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by the genetic algorithm with elitism (Goldberg 1989, 

Chakraborty and Chaudhuri, 2003). 

 

Inverse Problem 

 

Let ,...  be a set of N total-field 

anomaly observations at ( , i=1,…,N, produced 

by a 3D magnetic source with arbitrary geometry and 
uniform magnetization (Figure 1).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1:  Methodology. The red circles are magnetic dipoles. 
xi,yi,zi are measurements points. bi is the ith total-field anomaly 
x’j,y’j,z’j are the jth dipole Cartesian coordinates. The upper plot 
represents the observed total-field anomaly (black contour lines) 
superposed by the predicted total-field anomaly (red contour 
lines).  

 
 
To estimate the skeleton of this 3D source, we assume a 

set of M elementary magnetic dipoles, all of them with the 

same magnetization direction and the same magnetic 

dipole moment intensity. The jth dipole is located 

at  , j =1,...,M, as we can see in Figure 1. 

Given a set of predicted magnetic data 

,...  , the problem of estimating the vertical 

and horizontal positions, the magnetic inclination and 

declination and the magnetic dipole moment intensity can 

be formulated as the minimization of the following 

objective function: 

 

 
where vector q can be expressed in partitioned form as: 

, 
T 

and 

T
. The superscript T stands for 

transposition. The first part of Equation 1 is the sum of 

squared differences between the observed data and the 

predicted data (Euclidean norm). As we already know, the 

majority of inverse problems are ill-posed, which means 

that the information contained in the data is not sufficient 

to estimate the parameters in a stable way. That’s why we 

need a priori information to stabilize the inverse problem. 

 
The second part of Equation 1, the equidistance function 

fe(p), measures how the magnetic dipoles are not 

equidistant from each other. If all dipoles are at the same 

distance from its nearest neighbor, then fe(p) is equal to 

zero. Otherwise, fe(p) will be equal to the sum of squared 

differences between these distances. The function fe(p) 

penalizes the fit between predicted data and observed 

data through the imposition of compactness to the M 

elementary dipoles. This imposition avoids that some 

dipoles deviate from the set. With this, we estimate a 

compact and homogeneous distribution of dipoles that 

better represent a compact and homogeneous 3D 

magnetic source. 

 

In order to control the compromise between fitting the 

data (first part of the objective function) and the 

equidistance function (second part of the objective 

function), we introduce a real positive number, called the 

regularizing parameter (μ). 

 
  A priori information: Minimum spanning tree 

regularization 

 

Instead of using traditional Tikhonov regularization 

(Tikhonov and Arsenin, 1977) and Last and Kubic 

compactness regularization (Last and Kubic 1983), we 

calculate the equidistance function by the minimum 

spanning tree. Let G(V,E) be a non-oriented, acyclic and 

connected graph,  where V is the set of dipoles (or 

vertices of the graph) and E is the set of possible 

interconnections (the edges) between the pairs of dipoles. 

Each interconnection has a weigh represented by the 

distance between nearest dipoles. So we want an acyclic 

subset of edges that connects all dipoles and whose 

weight is minimized. To achieve this goal, we implement 

the Kruskal’s algorithm (Cormenet al., 2002). The 

Kruskal's algorithm is a greedy algorithm in graph 

theory that finds a minimum spanning tree for 

a connected weighted graph. 

 

  

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Greedy_algorithm
http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Minimum_spanning_tree
http://en.wikipedia.org/wiki/Connectivity_(graph_theory)
http://en.wikipedia.org/wiki/Glossary_of_graph_theory#Weighted_graphs_and_networks
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Inversion tool: Genetic Algorithm with Elitism (EGA) 

 

Genetic algorithms consist of a random search algorithm 

based on the mechanics of natural selection and natural 

genetics (Goldberg, 1989). Genetic algorithms are widely 

used in linear and nonlinear optimization problems due to 

its capacity of finding the global minima of multimodal 

functions (Smith and Ferguson, 2000).  

 

Genetic algorithms require a set of initial estimates (i.e., 

an initial population). In general, the initial population can 

be randomly selected between a range values in the 

parameter space. In this methodology, we raffle both the 

vectors u and p with regular distribution inside boundaries 

values. The boundaries values are referred to as search 

limits. The search limits play a crucial role in the 

convergence of the genetic algorithms. If the search limits 

are too large, genetic algorithms will need an equally 

large number of iterations (i.e., generations) to converge 

and the computational cost can make the problem 

intractable. Otherwise, if the search limits are wrongly set 

up, genetic algorithms can converge to unwished minima. 

 
The relevant stages in the implementation of the genetic 

algorithm, such as selection of parents, mutation and 

crossover are widely discussed in Goldberg (1989). We 

consider an extra stage in our implementation called 

elitism. At this stage, the fittest individuals of the current 

generation are replicated to the next generation. The 

elitism can be considered as a convergence accelerator, 

because it allows the appearance of a "super-man" at the 

last generations. Genetic algorithms with this strategy are 

referred as genetic algorithms with elitism or EGA 

(Chakraborty and Chaudhuri, 2003). 

 
Synthetic example 

As primary results, we apply our methodology to a noise-

corrupted synthetic magnetic data set produced by a 2 x 2 

x 6 km³ vertical prism, with magnetic inclination of 20° and 

magnetic declination of 45°. We simulate a geomagnetic 

field with magnetic inclination of -17° and magnetic 

declination of -20°. In this test, we use 10 magnetic 

dipoles. The EGA runs for 150 generations with a 

population of 30 individuals. Six fittest individuals are 

replicated at elitism. The search limits for the dipoles 

Cartesian coordinates are defined by total-field anomaly 

amplitudes. The search limits for the magnetic inclination 

are defined between 10º and 40º, while the search limits 

for magnetic declination are defined between 20° and 

60°. The search limits for the dipole moment intensity are 

one magnitude order up and down from an average 

value, set to be 24 A.m². Figure 2A presents the spatial 

estimates of the dipoles using the EGA without the 

minimum spanning tree regularization (μ = 0).  

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: (A) Spatial estimates of dipoles (red circles) without 
minimum spanning tree regularization. The prism is the true 
homogeneous magnetic source. (B) Observed data (color map) 
and predicted data (black lines) 

 

We can see in Figure 2A that the deeper dipoles deviated 

from the set of dipoles that fit the data. In Figure 2B, we 

validate the result by plotting the observed data (color 

map) and the predicted data (black lines on the color 

map) superposed. To better represent compact sources 

and rescue the deviated dipoles of Figure 2A, we repeat 

the same test applying the minimum spanning tree 

regularization. We set μ = 1000. In Figure 3A, we observe 

that the dipoles became more compact, what is expected 

to better represent the homogenous magnetized prism.  

In Figure 3B, we observe a good agreement between 

observed and predicted Total-field anomaly. 

The Table 1 shows the estimates of the magnetic features 

for both tests. Despite small discrepancies, our EGA 

offers good estimates of the magnetic inclination and 

declination in both tests.   
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Test i i’ d d’ mo mo’ 

Test1 

(figure2A) 

20.0 21.2 45.0 43.7 24 27 

Test2 

(figure3A) 

20.0 18.0 45.0 45.1 24 27 

 
Table 1: (i,d) are the true magnetic inclination and declination. 
(i’,d’) are the predicted magnetic inclination and declination for 
both tests. mo is the true dipole moment intensity and mo’  is the 
estimated dipole moment intensity for both tests.   

 

Later on, we will test this promising methodology to other 

synthetic cases, validated by a good correlation between 

observed data and predicted data. After that, we will be 

able to apply our methodology to real data sets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: (A) Spatial estimates of dipoles (red circles) with some 
minimum spanning tree regularization. The prism is the true 
homogeneous magnetic source. (B) Observed data (color map) 
and predicted data (black lines) 

 

Conclusions and future work 

 

We have developed a method for estimating the 

Cartesian coordinates of a finite number of elementary 

magnetic dipoles that represent 3D homogeneous 

magnetic sources. In addition, we estimate a 

magnetization direction (inclination and declination) and a 

dipole moment intensity for all dipoles. Our inversion 

incorporates the minimum spanning tree regularization to 

impose compactness to the set of dipoles. Tests on 

synthetic data show good performance of the EGA in 

recovering the direction of the magnetization vector and 

the skeleton of the simulated magnetic source. 

Later on, we will test this promising methodology to other 

synthetic cases, validated by a good correlation between 

observed data and predicted data. After that, we will be 

able to apply our methodology to real data sets. 

Other future work will be the multi-objective optimization. 

With this, we will create a set of solutions without dealing 

with the regularizing parameter.  
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