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Abstract  

The use of compactly supported wavelet functions has 
become increasingly popular in the development of 
numerical solutions for differential equations. The present 
work discusses an alternative to the usual finite difference 
(FDM) approach to the acoustic wave equation modeling 
by using a space discretization scheme based on the 
Galerkin Method. The combination of this method with 
wavelet analysis results in the Wavelet Galerkin Method 
(WGM) which has been adapted for the direct solution of 
the wave differential equation in a meshless formulation.  
This work also introduces Deslauriers-Dubuc wavelets 
(Interpolets) as interpolating functions. Examples in 1-D 
were formulated using a central difference (second order) 
scheme for time differentiation. Encouraging results were 
obtained when compared with the FDM using the same 
time steps. 

Introduction 

Among the numerous techniques available for the 
solution of the partial differential equation that describes 
wave propagation, the finite difference approach (Kelly et 
al, 1976) is by far the most employed one, being used 
frequently as a standard for the validation of new 
methods. As a disadvantage, the FDM is known for 
requiring excessive refining of the model discretization.  

The use of wavelet-based numerical schemes has 
become increasingly popular in the last two decades, 
especially for problems with local high gradients. 
Wavelets have several properties that are quite useful for 
representing solutions of partial differential equations 
(PDEs), such as orthogonality, compact support and 
exact representation of polynomials of a certain degree. 
These characteristics allow the efficient and stable 
calculation of functions with high gradients or singularities 
at different levels of resolution (Qian and Weiss, 1992).  
A complete basis of wavelets can be generated through 
dilation and translation of a mother scaling function. 
Although many applications use only the wavelet filter 
coefficients of the multiresolution analysis, there are some 
which explicitly require the values of the basis functions 
and their derivatives, such as the Wavelet Finite Element 
Method (WFEM) (Chen et al., 2004). 

Compactly supported wavelets have a finite number of 
derivatives which can be highly oscillatory. This makes 
the numerical evaluation of integrals of their inner 
products difficult and unstable. Those integrals are called 
connection coefficients and they are employed in the 
calculation of stiffness and mass matrices. Due to some 
properties of wavelet functions, these coefficients can be 
obtained by solving an eigenvalue problem using filter 
coefficients. 

Working with dyadically refined grids, Deslauriers and 
Dubuc (1989) obtained a new family of wavelets with 
interpolating properties, later called Interpolets. Their filter 
coefficients are obtained from the autocorrelation of the 
Daubechies’ coefficients (Daubechies, 1988). In 
consequence, interpolets are symmetric, which is 
especially interesting in numerical analysis. The use of 
interpolets instead of Daubechies’ wavelets considerably 
improves the method’s accuracy. 

In this work, the Wavelet-Galerkin Method has been 
adapted for the direct solution of differential equations in a 
meshless formulation. This approach enables the use of a 
multiresolution analysis. Accuracy can be improved by 
increasing either the level of resolution or the order of the 
wavelet used.  

As a preliminary study, the formulation of an interpolet-
based Galerkin scheme was demonstrated for a one-
dimensional wave propagation problem. Some examples 
were formulated and results compared with the standard 
Finite Differences Method.  

Interpolets 

Multi-resolution analysis using orthogonal, compactly 
supported wavelets has become increasingly popular in 
numerical simulation. Wavelets are localized in space, 
which allows the analysis of local variations of the 
problem at various levels of resolution.  

In the following expression, known as the two-scale 
relation, ak are the filter coefficients of the wavelet scale 
function. 
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The basic characteristics of interpolating wavelets require 
that the mother scaling function satisfies the following 
condition (Shi et al, 1999): 
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The Deslauriers-Dubuc (1989) interpolating function of 
order N is given by an autocorrelation of the Daubechies’ 
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scaling filter coefficients (hm) of the same order (i.e. N/2 
vanishing moments). Its support is given by [1-N,N-1], it 
has even symmetry and is capable of representing 
polynomials of order up to N-1. 
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Interpolets satisfy the same requirements as other 
wavelets, specially the two-scale relation, which is 
fundamental for their use as interpolating functions in 
numerical methods. Figure 1 shows the interpolet IN6 
(autocorrelation of DB6). Its symmetry and interpolating 
properties are evident. There is only one integer abscissa 
which evaluates to a non-zero value.  

-5 -4 -3 -2 -1 0 1 2 3 4 5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

 
Figure 1: Interpolet IN6 scaling function with its full support. 

The numerical solution of differential equations is one of 
the possible applications of the wavelet theory. The 
Wavelet-Galerkin Method (WGM) results from the use of 
wavelets as interpolating functions in a traditional 
Galerkin scheme (Du & Bancroft, 2004). In the following 
sections, the WGM will be applied to solve the typical DE 
for acoustic wave propagation. 

Wave Propagation using the WGM 

The partial differential equation (PDE) which rules the 
wave propagation in 1-D is: 

α ∂ ∂
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2 2
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x t

 

where, u is the horizontal displacement and α is the 
medium velocity. Assuming that the displacement u is 
approximated by a series of interpolating scale functions, 
the following may be written: 
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The Galerkin method consists in substituting the 
expression above in the differential equation and forcing 
the approximation error to be orthogonal to a test result 
which is formulated using the same interpolating 
functions.  
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Using this approach, the PDE can be rewritten at a 
specific time t as a system of linear equations, which in 
matrix form is: 

+ =��   t tm d kd 0  

In this expression, m represents the mass matrix and k is 
the stiffness matrix of the model, which in normalized 
coordinates (ξ) within the interval [0,1] are given by: 
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The so-called connection coefficients Λ appear in the 
expressions above. Wavelet dilation and translation 
properties allow the calculation of connection coefficients 
to be summarized by the solution of an eigenvalue 
problem based only on filter coefficients (Zhou & Zhang, 
1998). 
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Since the expression above leads to an infinite number of 
solutions, there is the need for a normalization rule that 
provides a unique eigenvector. This unique solution 
comes with the inclusion of the so-called moment 
equation, derived from the wavelet property of exact 
polynomial representation (Burgos et al., 2009). 

As in the FDM, it becomes necessary to solve the system 
of equations at discrete time intervals. There are several 
effective direct integration methods, among which the 
most intuitive one is the Central Difference Method: 
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Substituting the expression of the acceleration obtained 
by the Central Difference Method and solving for the next 
time step dt+Δt: 

( ) ( )2
1 12t t t tt+ −= − − Δmd m d d kd  

Stability of the Central Difference Method is conditioned 
to the choice of the time step, whose upper bound is 
obtained from a generalized eigenvalue problem. 

( ) ( )ω ω− = → − =2 2k m d 0 X I d 0  

ω
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Matrix m might not be invertible. In this case, boundary 
conditions shall be imposed by using Lagrange 
multipliers. This procedure leads to a square matrix which 
can be useful for some system solvers.  
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In the expression above, the matrix g is associated with 
boundary conditions and λ is a vector of Lagrange 
multipliers which is not used in the solution. The main 
difference in relation to the FDM is that the unknowns in 
vector d are the interpolating coefficients of the basis 
functions instead of nodal displacements. In fact, there is 
no need to establish nodal coordinates. 

When dealing with one-dimensional problems, most 
wavelets (including Daubechies and Interpolets) present a 
mass matrix whose rank is one unit less than its size. This 
means that only one boundary condition needs to be 
imposed for the system to have a solution. 

 

Examples 

To validate the formulation, a 1-D example was 
implemented, consisting in applying a ricker source at the 
midpoint of a pinned, unit length rod. The propagation 
was modeled by the FDM using 265 points and Δt=0.3ms, 
with fourth and second order discretization in space and 
time, respectively. This time step was obtained using the 
upper bound described in the previous section. For this 
example, the lowest central frequency of the source that 
produces a numerical dispersion is ω=80Hz. The same 
source central frequency, special discretization and time 
step were used in the WGM example, with no visible 
dispersion in the results. Figure 2 shows the response at 
time t=0.45s for both methods using a source central 
frequency of ω=40Hz. There is no visible numerical 
dispersion in either case. Figure 3 shows the response 
using a source central frequency of ω=80Hz, which 
produces numerical dispersion in the FDM model. 
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Figure 2: FDM and WGM results for ω=40Hz 

As a second example, the rod is made by two different 
materials and the dispersion in the case of the FDM is 
even greater, as shown in figure 4.  As expected, the 
change in velocity introduces additional errors in the FDM 
model. These errors are not present in the WGM model.  
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Figure 3: FDM and WGM results for ω=80Hz 

Conclusions 

This work presented the formulation and validation of the 
Wavelet-Galerkin Method (WGM) using Deslauriers-
Dubuc Interpolets. These preliminary results are 
promising, but the simplicity of the studied models has to 
be taken into account. The main improvement in the 
presented formulation was the recognition of a different 
dispersion pattern when comparing FDM and WGM 
results using the same space and time grid. Both 
methods used second order time discretization and the 
FDM used fourth order space discretization, which shows 
that comparisons were made against a robust numerical 
scheme.  

All matrices involved can be stored and operated in a 
sparse form, since most of their components are null, thus 
saving computer resources. Due to the compact support 
of wavelets, the sparseness of matrices increases along 
with the level of resolution. 

In future works, models with greater complexity will be 
analyzed and different families of wavelets will be 
explored. The extension of the method to irregular 
geometries in two-dimensional problems is still a 
challenge, but one potential advantage is the possibility of 
implementing absorbing boundary conditions analytically 
with the use of Lagrange Multipliers. 
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Figure 4: (a) Velocity profile (red region is a faster medium) and source position; (b) Snapshot for amplitude comparison at time t=0.35s for
example 2; (c) Seismogram obtained using WGM; (d) Seismogram obtained using FDM with noticeable numerical dispersion. 
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