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Copyright 2013, SBGf - Sociedade Brasileira de Geofı́sica.

This paper was prepared for presentation at the 13th International Congress of the
Brazilian Geophysical Society, held in Rio de Janeiro, Brazil, August 26-29, 2013.

Contents of this paper were reviewed by the Technical Committee of the 13th

International Congress of The Brazilian Geophysical Society and do not necessarily
represent any position of the SBGf, its officers or members. Electronic reproduction
or storage of any part of this paper for commercial purposes without the written consent
of The Brazilian Geophysical Society is prohibited.

Abstract

We assess the Finite Difference frequency domain
method to modelling the electromagnetic response of
energized geological media. We start from the 2.5D
electromagnetic formulation using secondary scalar
and vector electromagnetic potentials. The use of
secondary potentials removes singular problems with
primary fields. To model rapidly changing fields we
also tested non-uniform unstructured grids and show
that the use of radial basis functions can handle, with
good accuracy, the numerical derivatives that arise
from our procedure.

Introduction

When dealing with electromagnetic geophysical problems,
the expressions of fields and potentials come from
the solution of differential equations. In the most
complex cases, it is necessary to use numerical methods
to generate an approximate solution, since for most
geometries it is impossible to obtain an analytical
expression. Some of the most common numerical methods
are for example, the finite difference method (Mackie et al.
1993), the finite element method (Schenkel, 1991) and the
integral equation method (Hohmann,1975).

The Finite Difference method (FD) is a numerical
procedure used to solve differential equations in which the
derivatives are approximated by finite differences. One of
its main advantages is its easy implementation, making it
suitable for a wide variety of problems. Finite Difference
has generally been carried out using regularly structured
grids (Franke et al. 2004), which facilitates the calculation
of numerical derivatives but causes it to be less flexible in
the task of delineating complex structures.

Methods, such as finite element and integral equation,
are very popular in areas like engineering and physics
because of their flexibility and versatility, and this is partly
due to their ability of using adaptive meshes, however, they
have a serious limitation in efficiency for large number of
variables (Fernandez & Kulas, 2004). Adaptive meshes
are very appropriate in cases where the solution sought
varies widely in the problem domain or with boundaries
non-conforming to the grid, which is the case of most of

the problems in geophysics.

In this paper, we present the 2.5D electromagnetic
formulation, in terms of the secondary electrical scalar
and magnetic vector potentials to be computed by the
Finite Difference method. We have used unstructured
grid, created by a finite element mesh generator (Persson,
2005), and to derive first and second order partial
derivatives at each node, we used the expression of a
radial basis function, calculated in terms of the function
values at a number of neighboring mesh nodes. Thus,
no spatial interpolation has to be performed between
unstructured and uniform meshes.

2.5D electromagnetic formulation

We start from coupled Maxwell’s equations in the
frequency domain, as showed below

∇×H(x) =
(
σ(x)− iωε

)
E(x)+Js(x) (1)

∇×E(x) = +iωµH(x) (2)

where σ is the electrical conductivity, ω is the angular
frequency, Js is the current density and µ is the magnetic
permeability. Then, we define the inhomogeneous
wavenumber k(x) as

k(x) =
√

ω2µ0
(
ε + iσ(x)/ω

)
, Im(k(x))> 0. (3)

Here we uncouple E(x) and H(x) fields by introduction
of the magnetic vector potential A(x), which defines the
magnetic vector induction:

B(x) = ∇×A(x) (4)

Using (4) in (1) and (2), yields

E(x) = iωA(x)−∇φ(x) (5)

And from conservation of charge ∇ · J(x) − iωρ(x) = 0,
we can obtain, after some manipulation, the following
equations(

∇
2 + k2(x)−K2

z

)
As(x)+2µ0∇α(x)Vs(x) =

−
(
k2(x)− k2

1
)
A0(x)−2µ0∇α(x)V0(x) (6)

and(
∇

2 + k2(x)−K2
z −

∇2α(x)
α(x)

)
Vs(x)−2iω∇α(x) ·As(x) =

2iω∇α(x) ·A0(x)+
(

k2(x)− k2
1−

∇2α(x)
α(x)

)
V0(x).

(7)
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Equations (6) and (7) form the coupled linear system
related to the secondary potentials A(x) and V (x), where
the primary potentials were subtracted to avoid source
singularity problems. The scalar potential V (x) is related
to the scalar potential φ(x) by the expression:

φ(x) =
V (x)
α(x)

, (8)

where
α(x) =

√
σ(x). (9)

This transformation of the scalar potential renders the
operators symmetric in equation (7) as required when
using for example, the conjugate gradient method as
solver.

The resolution of the linear system by Finite Difference
method requires a complete discretization of our domain,
yielding a very large sparse matrix to be solved. The
unstructured grid is refined in the regions where the fields
vary more rapidly.

Handling numerical derivatives

Once the unstructured grid is established, the idea is to fit
a surface of a given order to each grid node, with the aid of
some neighboring nodes. Thus, a surface can be defined
by:

f (x) =
n

∑
j=1

λ jφ(‖x− x j‖), (10)

where φ(r), r ≥ 0 is some radial function and n is the
number of neighboring nodes plus the central node. The
coefficients λ j are determined from the condition f (x j) = s j,
j = 1, . . . ,n, where s j is the value of the function at each
of the n nodes, which leads to the follow symmetric linear
system: [

A

]
.

[
λ

]
=

[
f

]
, (11)

where the entries of A are given by a j,k = φ(‖x j − xk‖).
The procedure described above is knows as Basic Radial
Basis function (RBF) Method, and a good account of its
formulation can be found in Wright (2003). Some common
examples of the φ(r) that lead to a uniquely solvable
method are given in table 1.

Type of basis
function

φ(r)(r≥ 0)

Gaussian
(GA)

e−ε2r2

Inverse
quadratic

1
1+(εr)2

Inverse
multiquadratic

1√
1+(εr)2

Multiquadratic
√

1+(εr)2

Table 1: Examples of radial basis functions.

The parameter ε is some fixed non-zero value that controls
the shape of functions. In our problem, we use the

Gaussian function as φ(r), and for this expression, first and
second order derivatives are give by:

∂ f
∂x

=
n

∑
j=1

λ j
[
−2ε

2(x− x j)e−ε2r2]
∂ f
∂y

=
n

∑
j=1

λ j
[
−2ε

2(y− y j)e−ε2r2]
∂ 2 f
∂x2 =

n

∑
j=1

λ j
[
−4ε

2[1− ε
2(x− x j)

2]e−ε2r2]
∂ 2 f
∂y2 =

n

∑
j=1

λ j
[
−4ε

2[1− ε
2(y− y j)

2]e−ε2r2]
(12)

where r =
√

(x− x j)2 +(y− y j)2.

To evaluate the performance of RBF method, we use the
MATLAB

r
peaks function and its first and second order

analytical derivatives to compare with the numerical results
we obtained. We computed numerical first and second
order derivatives of peaks function using the RBF method
and also using the procedure where we interpolate the
peaks function from the unstructured to uniform grid and
then calculate the derivatives. Finally, we compare each
result with its corresponding analytical through the absolute
difference of both
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Figure 1: a) Adaptive unstructured grid refined in the
regions of greatest variation of f . b) Peaks function
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Figure 2: First order derivatives comparison.
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Figure 3: Second order derivatives comparison.

Figure 2 shows that, although the interpolation method has
generated an reasonable result, it is less accurate than the
result obtained by the RBF method. And in Figure 3, we
noticed that for the calculation of the second derivative, the
interpolation method is totally impaired, whereas the RBF
method still generates good results.

A geophysical example

In the following example, we model the flow of electric
current between two media with different electrical
conductivities. For that, we refine the unstructured grid in
the interface between the two media, where the electrical
fields have a rapid variation, which is the response of the
electrical current flowing between two source electrodes
placed near and parallel to the interface between the
media. Because the lines of current flow are always parallel
to the equipotential surfaces, the arrangement of these
surfaces for this type of source indicates that there will be
current flowing between the two media, as shown in Figure
4.
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Figure 4: Representation of equipotentials surfaces.

For the dc current case, equations (6) e (7) reduce to:

(
∇

2−K2
z −

∇2α(x)
α(x)

)
Vs(x) =−

(
∇2α(x)

α(x)

)
V0(x). (13)

Solving the linear system of equations generated by
the discretization of equation (13) in the domain and
performing the inverse transformation of equation(8) in the
resulting Vs, give us the secondary scalar potencial φs(x,y),
as follow:
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Figure 5: Numerical secondary electrical scalar potential.

To validate this result, we compare it with the analytical
solution of this problem, which can be found for example
in Wait (1982).
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Figure 6: Absolute difference between numerical and
analytical solution for the scalar wave problem.
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Figure 7: Absolute difference between numerical and
analytical solution for the scalar wave problem.

Figure 6 shows the absolute difference between the
numerical and analytical solution of the presented problem.
Figure 7 compares results taking the potential values on a
line perpendicular to the media interface. We notice that
the numerical solution becomes worse when approaching
the edges. This occurs because the finite difference
method is less accurate in this region, where the calculation
of the derivatives is affected due to the lower number of
neighboring points that we can choose. Results show a
good approximation obtained by the procedure.

Summary, Comments and Conclusions

We present the development for the modelling of the
electromagnetic potentials by unstructured grid Finite
Difference method. We have shown that is possible to
obtain a good approximation of the derivatives that arise in
the problem through the use of radial basis functions, with
no need of spatial transformations between unstructured
and structured grids. The derivatives evaluation with the
RBF method proved to be well suited even in functions with
certain discontinuities, although this can be improved by
the use of filters to smooth discontinuous regions. Results
show considerable advantages over the standard Finite
Difference method and indicate that the methodology can
be very effective in more complex problems, which are our
future extensions.
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