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Abstract

Time-frequency (TF) analysis can reveal important
details of seismic data and provide valuable
information for reservoir characterization.
Resolution in the TF plane is clearly critical for
interpretation. Many methods applied to time-
frequency representation introduce spurious or
cross-terms, essentially when using bilinear functions
such as the Wigner Ville Distribution (WVD). Most
techniques proposed to overcome this shortcoming
use a smoothed kernel which in turn can adversely
affect the component’s concentration in the TF plane.
We propose to apply the Maximum Entropy Method
(MEM) to WVD to obtain a robust and high resolution
time-frequency representation of seismic traces, and
we also introduce a formula to estimate instantaneous
frequency (IF) in time domain. We apply our approach
to the spectral decomposition and IF analysis of a
seismic dataset from the Gulf of Mexico. The analysis
allows us to identify hydrates and a gas pocket.

Introduction

In recent years time-frequency or time-scale
representations have found significant application in
nonstationary analysis of a wide range of signals including
seismic signals (Boashash, 1992). The position of peaks
in the time-frequency representation reveals the main
components or structures of the signal, and this makes
it a useful tool for seismic data analysis and reservoir
characterization (Wang et al., 2011). The spectrogram
(Gabor, 1946), one of the earliest proposed distributions,
is still commonly used to this day. However, the trade-off
between temporal and spectral resolution, the so called
uncertainty principle, is unavoidable. To overcome these
shortcomings, other nonstationary representations have
been proposed, among them are the wavelet transform,
and Matching Pursuit (MP) as presented by Mallat
and Zhang (1993); these techniques have been widely
used in seismic signal analysis. MP suffers from high
computational complexity and its time-frequency resolution
depends on the dictionary, which must be carefully chosen.
Other alternative representations include Cohen’s class
(Choi and Williams, 1989) of bilinear time-frequency
energy distributions. A prominent member of this group
is the Wigner-Ville distribution (WVD), which satisfies

an exceptionally large number of desirable mathematical
properties and exhibits the least amount of spread in
the TF plane. However, because of its quadratic nature,
the WVD possesses a cross component (interference
term) for each pair of signal components. In practical
applications, this phenomenon can reduce the readability
when multi-component or nonlinear frequency modulated
signals are concerned. A common strategy to reduce
the impact of these cross-terms is the introduction of a
fixed smoothed kernel in the WVD. Examples include the
Smoothed Pseudo-Wigner Ville Distribution (SPWVD)
(Franz et al., 1995), and Choi-Williams Distribution (CWD)
(Choi and Williams, 1989). Other methods use an adaptive
kernel such as proposed by Steeghs and Drijkoningen
(2001). This method was used by Wang et al. (2011) to
characterize seismic attenuation. However attenuation of
the cross-terms by means of smoothing generally results
in an increase of TF spread of the signal components, thus
reducing the accuracy of the representation. We therefore
suggest a Maximum Entropy Method (MEM) to avoid cross
term representation in the WVD, by maximizing the power
of each kernel of the Discrete Wigner-Ville (DWV). We
compare this method to SPWVD and CWD time-frequency
decomposition.

Our field data application is concerned with a problem of
identification of two areas in seismic data from the Gulf
of Mexico (GOM). We apply our proposed method to the
analysis of the attenuation of seismic data via the method
of instantaneous frequency (IF) analysis. Furthermore,
we obtain the energy density distribution from the spectral
decomposition of the data. This analysis allows us to
identify an area of hydrates and an area of gas pocket.

Wigner-Ville Distribution and Interference terms

The Wigner-Ville Distribution (WVD) is defined as
(Boashash, 1992):

W (t, f ) =
∫

∞

−∞

x(t +
τ

2
)x∗(t− τ

2
)e−2 jπ f τ dτ (1)

where x(t) is the signal, t the time, f the frequency and τ

is the lag. Due to the quadratic nature of the distribution,
the application of the WVD is limited by the presence of
interference terms. These can be described considering
elementary mono-components z(t) and g(t) and the WVD
is then given by:

Wz+g =Wz(t, f )+Wg(t, f )+2Re[Wz,g(t, f )] (2)

Wz(t, f ), and Wg(t, f ) are the auto-terms and Re[Wz,g(t, f )]
represents the cross-terms observed between z(t) and g(t)
which may lead to an erroneous visual interpretation of the
time-frequency representation.

Since interference terms are oscillatory they can be
attenuated by means of a smoothing operation by a 2-
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D smoothing kernel in the Fourier domain. This is the
method adopted for Smoothed Pseudo Wigner-Ville and
Choi-Wlliams Distribution (Franz et al., 1995).

The Discrete Wigner-Ville Distribution

The analytic signal z(n) corresponding to a signal x(n) is
defined in the time domain as

z(n) = x(n)+ jH[x(n)] (3)

where H[x(n)] represents the Hilbert transform of signal
x(n), n = 0, . . . ,Ns − 1, and Ns is the number of samples.
The analytical signal may be used to generate a covariance
matrix, Cx = zzH . The superscript H represent the
transpose conjugate of the vector z. One may verify the
hermitian property, Real{Cz} = Real{CT

z } and Imag{Cz} =
−Imag{CT

z }. The sequence of terms along each cross-
diagonal of Cz is the kernel of the Discrete Wigner-Ville
(DWV) distribution and may be written as,

K(n) = {kn(−l), · · · ,kn(0), · · · ,kn(l)} (4)

with terms given by,

kn(l) =
{

z(n− l)z∗(n+ l), |l| ≤ min{n,Ns−n} ,
0 , |l|> min{n,Ns−n}. (5)

We remark that the central term, kn(0), is associated with
sample z(n) of the input signal kn(0) = z(n)z∗(n).

The Fourier transform (FT) of the kernel K(n) corresponds
to the Wigner-Ville spectrum, which is the instantaneous
power spectrum corresponding to the data point z(n), and
can be expressed as:

W (n) =
{

wn(−
N−1

2
), · · · ,wn(0), · · · ,wn(

N−1
2

)

}
(6)

with coefficients given by,

wn(m) =
1
N

(N−1)/2

∑
l=−(N−1)/2

kn(l)W ml
4 . (7)

N is the number of terms used in the DFT. As pointed
by Bouashash (1987), equation (7) matches the standard
form of a discrete FT, (DFT), except that the so called
twiddle factor is normally defined as W2 = exp[− j2π/N].
The additional power of 2 represents a scaling of the
frequency axis by a factor of 2. Equation (7) can be
evaluated efficiently using standard fast Fourier transform
(FFT) algorithms.

The collection of instantaneous power spectrum, W (n), n =
0, · · · ,Ns− 1, form the DWV time-frequency representation
of the signal.

Properties

• The summation of kernel sequences K(n) result in
the sequence of even terms of the autocorrelation
function (ACF) of the signal,

Ns−1

∑
n=0

K(n) = Rz(n), (8)

Rz(n)= {rz(−Ns +1), · · · ,rz(−2),rz(0),rz(2), · · · ,rz(Ns−1)}.

• Analogously to the marginal property of the ACF,
(equation (8)), the power spectrum of the entire
signal may be calculated by the summation of the
instantaneous Wigner-Ville power spectrum,

Pz(m) =
Ns−1

∑
n=0

W (n). (9)

Others properties of DWV are discussed in Boashash
(1992).

DWV in terms of the Maximum Entropy Method

We propose to use the Maximum-Entropy Method,
(MEM), developed by Burg, (1975), to compute the
power spectrum for every sequence of the K(n),
n = 0, . . .Ns−1. The basic equation of the MEM is

P( f ) =
ENc ∆t

|1+∑
Nc
n=1 cne− j2π f n∆t |2

, (10)

where P( f ) is the power spectrum, cn, n = 0, . . . ,Nc − 1,
(c0 = 1), is the prediction error operator (PEO), of order
Nc and ENc is its corresponding prediction error energy. f is
limited by the Nyquist interval −1/(2∆t)≤ f ≤ 1/(2∆t).

The PEO can be estimated by the Levinson’s algorithm
or by Burg’s algorithm (Burg, 1975; Levinson, 1947) from
the analytical signal z(n), then using directly equation
(10) a time-frequency representation can be performed,
nevertheless, one may like to perform the WVD because of
its desirable mathematical properties, such as the marginal
conditions, also we would like to derive the instantaneous
frequency in time domain, so for a particular kernel K(n), a
corresponding trace z̃(n) is given by a window L and may
be expressed as:

z̃(n) =
{

z(n− L
2
), . . . ,z(n), ...,z(n+

L
2
)

}
(11)

where L is the length of the symmetric time-window,
centered at z(n). L is a parameter that together with
the number of coefficients Nc of the PEO, controls the
spectral resolution. Each coefficient of Nc can be physically
associate to a plane wave. Burg’s algorithm is particularly
useful because, it does not impose zeros outside the
window (eq. (11)), does not require previous coefficients
of the ACF, and provide a minimum-phase PEO, (Ulrych
and Bishop, 1975; Ulrych and Clayton, 1976; Marple, 1978;
Barrodale and Erickson, 1980; Porsani, 1986).

Burg,(1975) derived the relationship between the
coefficients of the ACF and the PEO, which is obtained by
solving the hermitian Toeplitz system of equations. From
the algorithm of Levinson (Levinson, 1947), one may write
the expression which relates the PEO of order j− 1 with
the coefficients rz of the ACF,

c( j, j) =
rz( j)+∑

j−1
i=1 rz( j− i)c( j−1, i)

E j−1
, (12)

where c( j, j) is the reflection coefficient. By using equation
(12) into Levinson’s recursion, it can be obtained the PEO
of order j from the ones of order j−1,

c( j, i) = c( j−1, i)+ c( j, j)c∗( j−1, j− i) (13)
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i = 1, . . . , j− 1. The corresponding prediction error energy,
E j, may be updated by,

E j = E j−1(1− c( j, j)c∗( j, j)). (14)

The equations (12), (13) and (14) are essentially the kernel
of the algorithm of Levinson, used to compute the PEO
from the coefficients of the ACF of a given signal. The
recursion start with E0 = rz(0).

The idea is to use Burg’s algorithm to provide the reflection
coefficients c( j, j) and Levinson’s recursion in reverse
order (Porsani and Ulrych, 1989), to compute and extend
the terms of every Wigner-Ville kernel. Equation (12) may
be rewritten as,

k̃n( j) =−
j−1

∑
i=1

k̃n( j− i)c( j−1, i)− c( j, j)E j−1. (15)

Also, from the hermitian property of matrix Cz, we have
k̃n(− j) = k̃∗n( j). The maximum-entropy instantaneous
power spectrum of WVD, may be obtained by performing
the DFT of the expanded kernel K̃(n), which is equivalent
to use the PEO directly into equation (10).

Instantaneous Frequency estimation in time domain

The average instantaneous frequency (IF) is commonly
obtained by computing the first moments of Wigner-Ville
distribution (Boashash and Whitehouse, 1986), and its
given by

IF(t) =
∫+∞

−∞
fW (t, f )d f∫+∞

−∞
W (t, f )d f

(16)

where f is frequency and W (t, f ) is the WVD. We
propose to estimate the IF in time domain as follow:
One may note that equation (16) is the inner-product
between the normalized instantaneous power spectrum
and the sawtooth function (Weber and Arfken, 2003). The
normalization term

∫+∞

−∞
W (t, f )d f , in the denominator, is

the time marginal of WVD and it is equal to kn(0). By
using Parseval’s theorems and symmetry properties of the
signals, we may rewrite equation (16), in the discrete form,
as

f (n) =
2∑

l=(N−1)/2
l=1 q(l)k̂n(l)

Nkn(0)
× 1

N∆t
(17)

where q(l) are the coefficients of the imaginary part
of the inverse FT of the sawtooth function and
k̂n(l) = Imag(k̃n(l)) are the imaginary part of the terms of
the kernel K̃(n), obtained using equation (15). The term
1/N∆t is necessary to convert to frequency units.

Algorithm for WVD, or for IF directly in time domain

• Obtain the complex trace z(n) = x(n)+ jH[x(n)].
• Set Nc, for the number of coefficients of the PEO.
• Set L, for the window length to compute the PEO.

For n = 0, Ns−1

• set E0 = kn(0),
• collect data associated with kernel K(n), (equation (11)),
• compute c( j, j), j = 1, . . . ,Nc − 1, using the Burg’s

algorithm,
• use equations (15), (13) and (14), j = 1, . . . ,N − 1 to

compute the extended DWV kernel, K̃(n),
• compute the DFT of K̃(n), to obtain the instantaneous

power spectrum, (equation (6)).
• if only the IF is desired, ignore the previous step and use

directly equation (17).

Figure1 shows a time-frequency distribution of a 1-D
synthetic signal which include two crossing chirps using the
WVD, the SPWVD, the CWD and the MEM; the proposed
method recovers the nonstationary tendency with high
resolution in time and frequency scale without any spurious
terms, comparing to others methods. The proposed
method can be further used for multicomponent or well-
seismic data registration (Fomel and Backus 2003, Fomel
et al, 2005). In the synthetic case, the coefficient number
Nc = 5 was used. A high number of coefficients may be
used in practical application for components separation.
In the real case showed in Figure 2, Nc = 2 was enough
to insure a high resolution representation. the spectrum
obtained with Nc = 2 can be traduce as an average
spectrum obtained by propagating infinitely one plane
wave. The effect of the window length is showed in Figure 3
with the IF curve overlain. As soon as the window decrease
the time-frequency resolution increase. We remark that,
for a fixed L, the IF curve does not change significantly
when varying the number of coefficients Nc, meaning that
the method is robust and provide a stable estimation of the
IF.

Application to GOM data

In Figure 4 we have a section of GOM data where areas
of high energy reflectors can be observed in the shallow
part (area 1 and 2). Initially, it is not possible to associate
both areas to the same event, such as the presence of
gas or hydrates, or to a strong lithology contrast. It can
also be observed that there is an amplitude dimming in
the structures at depth. To identify those areas we based
our analysis on attenuation characterization and energy
density distribution.

Figure 5, shows the instantaneous frequency image of the
seismic data which serves as measure of the attenuation
effect. Three zones are defined: HFZ (High Frequency
Zone around 30 Hz), MFZ (Median Frequency Zone around
15 Hz) and LFZ (Low Frequency Zone around 5 Hz). Areas
1 and 2 show high frequency content. Below area 1, we
observe a median frequency zone (MFZ), whereas below
area 2 we have a low frequency zone (LFZ), both areas
caused attenuation, but the attenuation effect caused by
area 1 is lower than the one caused by area 2. On the other
hand, the LFZ observed below area 1 can not be directly
related to the effect of that area, so we perform the spectral
decomposition to complete the analysis. Figure 6 shows
the energy density at 5 Hz where it can be observed the so
called low frequency shadow which is commonly used as
direct hydrocarbon indicator (Castagna et al., 2003, Wang,
2007, Oliveira et al., 2010), and it is generally interpreted
as caused by attenuation. Nevertheless this phenomenon
can be also related to velocity effect or thin bed effect as
pointed by Shenghon et al., (2009), and Wang (2010).
Interpreting the low frequency shadow as an indicator of
hydrocarbon, we associate the amplitude dimming of the
zone LFZ below area 1 to be caused by the presence of a
reservoir, and not related to area 1.

Figure 7 shows RGB blending applied following the spectral
decomposition where the shape and extend of both areas
can be clearly observed; both areas show high energy
density, but each one is associate to different frequencies;
area 1 contains lower frequency energy (15 Hz) than area
2 (30 Hz). We conclude that the two areas are not from
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the same event. Complementary velocity analysis (not
show here) confirmed that area 1 has higher velocity than
area 2. This suggest that area 1 can be associated with
the presence of hydrates and area 2 with a gas pocket.
The gas pocket may be causing the observed amplitude
dimming in zone LFZ directly below it.

In summary, then, the combined analysis of this set of
data using instantaneous frequency analysis and spectral
decomposition, indicates that area 1 and 2 are of high
energy density, high frequency content, and caused
attenuation on structures below, then can be considered
as absorption zones. In addition, the area 1 has lower
frequency than area 2, as well the attenuation effect
caused by area 1 is lower. This analysis confirm the
difference between both areas and allows to concluded that
area 1 is likely related to the presence of hydrates and area
2 to a gas pocket.

Conclusion

A high resolution time-frequency representation of seismic
data has been presented using a new approach
based on Wigner-Ville Distribution and Maximum Entropy
Method. It has been also introduced a new equation
to compute the instantaneous frequency directly in
time domain. The application on field data allows a
reliable analysis of attenuation effect and energy density
distribution, through the instantaneous frequency and
spectral decomposition analysis, it has been identified the
hydrates from gas pocket area, as well as the shape and
extend of both zones.
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Figure 1: Comparison of methods using synthetic data.

Figure 2: Comparison of methods using real data.

Figure 3: Effect of the window length (L), and the IF
overlain, obtained using equation (17).

Figure 4: Seismic data.

Figure 5: Instantaneous frequency of real GOM data, HFZ=
High frequency Zone, MFZ=Median frequency Zone, LFZ=
Low frequency zone.

Figure 6: Energy density.

Figure 7: RGB blending using 5Hz, 15Hz and 30 Hz
spectra.
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