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Abstract

When migrating more than one shot at the same time,
the nonlinearity of the imaging condition causes the
final image to contain the so-called crosstalk, i.e., the
results of the interference of wavefields associated
with different sources. In this work, we study various
ideas of using weights in the image condition, called
encoding, for the reduction of crosstalk. We combine
the ideas of random phase and/or amplitude encoding
and random alteration of the sign with additional
multiplication with powers of the imaginary unit. This
procedure moves part of the crosstalk to the imaginary
part of the resulting image, leaving the desired
crosscorrelation in the real part. In this way, the final
image is less impaired. Our results indicate that with
a combination of these weights, the crosstalk can be
reduced by a factor of 4. Moreover, we evaluate the
selection procedure of sources contributing to each
group of shots. We compare random choice with a
deterministic procedure, where the random numbers
are exchanged for numbers similar to those of a Costas
array. These numbers preserve certain properties of a
random choice, but avoid the occurrence of patterns
in the distribution. The objective is to avoid that
nearby sources can be added to the same group of
shots, which cannot be guaranteed with a random
choice. Finally, we show that the crosstalk noise can
be reduced after migration by image processing.

Introduction

Due to the great effort needed to migrate data from an
acquisition consisting of a large number of sources, as
required in 3D seismics, blended-shot migration processes
data from more than one source simultaneously (Temme,
1984). This idea is based on the observation that the (full
or one-way) wave equation is a linear operation, i.e., the
wavefield produced by a set of sources is equal to the sum
of the wavefields produced by each source acting alone.

The problem with this procedure arises when applying
the image condition, conventionally a crosscorrelation
between the wavefield propagated down from source and
the recorded field, backpropagated from the receivers.
When migrating shot groups, we replace the individual
fields associated with a single source by a sum over a
shot group. The result is a modified image consisting

of two contributions, one being the desired image and
other the interference from fields associated with different
sources, called crosstalk. Thus, this procedure is only
feasible in practice, if the crosstalk is considerably smaller
than the desired image. Since the number of individual
crosstalk contributions is higher than that those to the
image, measures must be taken to reduce each of them
in comparison to the desired image.

Several ideas on how to achieve the reduction of crosstalk
have been discussed in the literature, based on the
encoding of the sources, i.e., the inclusion of weights in the
image condition. Denoting the source and receiver weights
by wgk and w̃gk, the final energy distribution between image
and crosstalk depends on the matrix

Wk j =
G

∑
g=1

wgkw̃
∗
g j . (1)

Ideally, we would like to choose the weights such thatWk j =
δk j , with δk j denoting the Kronecker delta. This would
mean no crosstalk. As this cannot be satisfied exactly, we
need the best possible approximation.

The work of Romero et al. (2000) contains several
proposals for phase encoding (linear, random, by
frequency modulation – chirp). However, the noise
reduction achieved in that study was not sufficient to
allow for the sum of large numbers of sources. Other
ideas include the alteration of the sign (Sun et al., 2002),
source modulation (Soubaras, 2006), phase encoding
using gold codes (Guerra and Biondi, 2008), random
amplitude encoding (Godwin and Sava, 2010) and source
decimation (Godwin and Sava, 2011).

In this work we combine the ideas of random phase
and amplitude encoding and sign alteration with additional
multiplication with the weight wgk = w̃gk = ig. In this way, half
the crosstalk passes to the imaginary part of the resulting
image, while the desired image is unchanged. Thus, the
real part of the modified image is less affected by crosstalk.

Additionally to encoding, we evaluate the influence of
the choice of sources contributing to each shot group.
We compare the random choice with a procedure, where
the random numbers are exchanged for numbers similar
to those of a Costas array (Costas, 1965; Golomb and
Taylor, 1984; Drakakis and Rickard, 2010). These numbers
preserve certain properties of a random choice, but avoid
the occurrence of patterns in the distribution. The goal is to
avoid that nearby sources can be added to the same shot
group, which cannot be guaranteed with a random choice.

Finally, under the hypothesis that the crosstalk behaves
like random noise with zero mean, we apply a denoising
technique borrowed from image processing to the results
of a blended-shot migration.
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Weight functions

Random encoding makes use of a random variable to
calculate the weights. We have investigated the following
weights functions.

• Random phase encoding (between −π and π)

wg j =

{

exp{iπ(2r j−1)} continuous

exp{iπ
2JMr jK−M+1

M−1 } M levels
(2)

and w̃g j = wg j.

• Random amplitude encoding (between −1 and 1)

wg j =

{

2r j−1 continuous
(2JMr jK−M+1)/(M−1) M levels.

(3)

Here, we also used w̃g j = wg j, although this choice

degrades the quality of image Î. The choice w̃g j =
1/wg j would avoid this degradation, but introduces
instabilities when the weights are very small.

• Random choice of sign (only factors −1 or 1)

wg j = sgn(2r j−1) and w̃g j = wg j . (4)

Note that this choice is a subset of both preceeding
ones. It corresponds to a two-level phase or amplitude
encoding (phase −π and π, or amplitude −1 e 1).

• Deterministic imaginary-unit weight per group

wg j = ig and w̃g j = wg j . (5)

• Combinations of these weights, like the product of
weights (2) and (3), (2) and (5), (4) and (5), (2), (3)
and (5), etc.

In the above formulas, r j is the j-th realization of a random
variable, uniformly distributed between 0 and 1, and the
operator J.K denotes the Gauss brackets, defining the
largest integer less than its argument.

Group composition

Another question regarding the grouping of shots for the
purpose of migration refers to the selection of shots joined
into groups. Besides classical choices like the simulation
of plane or cylindrical waves, the random choice of shots
is suggested in the literature. However, by not controlling
the choice, patterns can form that may affect the final
image. An example for such patterns would be the choice
of neighboring shots showing strong correlations between
them. In this paper, we investigate a way to mitigate
this problem through a technique that selects numbers
minimizing the occurrence of patterns (“pattern-free”).

The technique is inspired by so-called Costas arrays
(Costas, 1965; Golomb and Taylor, 1984; Drakakis and
Rickard, 2010). A Costas array is a permutation of the
unit matrix so that there is no equal distance between
two nonzero elements. Thus, a shift creates, at most, a
coincidence of two such elements.

Unfortunately, the construction of Costas arrays presents
practical difficulties. First, Costas arrays of the dimensions
32 and 33 are not known in the literature. In addition,
the definition of a Costas array does not lead to a simple

method to find them. The only known way to find all Costas
arrays for a given order is an exhaustive search. However,
the number of Costas arrays of order N increases only up
to a maximum of 21,104 for N = 16. After this order, the
number drops quickly. Beard et al. (2004) show that there
are only 200 Costas arrays of order 24. Exhaustive search,
through the sequential generation of all N! permutation
matrices and checking the Costas condition, is prohibitively
slow for large N.

For these reasons, we opted for a process inspired by
one of the algorithms for finding Costas arrays for some
dimensions, the so-called Welch algorithm (Golomb and
Taylor, 1984). In our modification of this algorithm, for a
total number N of shots in the survey, we first seek the
smallest prime P greater than N. We then look for the
largest prime T less than P that generates a complete
permutation of the numbers from 1 to N by the following
process. First, we calculate the sequence n j = T j mod P ,
where n j ( j = 1, . . . ,P) form a permutation of the numbers
from 1 to P. In this sequence, we eliminate the elements
n j > N. If redundancy of shots within the set of groups
is desired, we change T to the largest prime less than T

that allows the construction and repeat the process. The
thus obtained permutation vector defines the sequence in
which the shots are grouped. If we want to build groups of
K shots, each set of K values of this vector defines a group.

Note that the probability for the array found with this
process to be a Costas array decays with increasing
N. However, this construction process actually has an
advantage over the use of true Costas arrays. Because
of the limited number of Costas arrays existing for large N,
the exclusive use of these arrays could lead to repeated
groups in the case of shot redundancy.

A posteriori crosstalk reduction

Since it is impossible to prevent the occurrence of crosstalk
when shot groups are migrated, another option is to remove
it (or part thereof) after migration. Assuming that the
noise is random and zero mean, we can apply existing
techniques for removing such noise. In this study, we
have tested the application of the nonlocal means (NLM)
technique borrowed from image processing (Buadès et al.,
2005, 2010; Bonar and Sacchi, 2012) and first applied to a
seismic problem by Bonar and Sacchi (2012).

The NLM algorithm is a random-noise attenuation filter
supposing that every image has a certain degree of
redundancy, which can be used to highlight structures.
The process searches, for each image point, other points
whose neighborhoods are similar to the neighborhood of
the original point, and uses these similarities to recover
the image in this region. The fundamental process of the
algorithm is an average over the whole image, applied with
a weight that is determined by the similarities between the
image in the vicinities under consideration.

Mathematically, the filtered image I is calculated from the
original imagem I by the weighted average

I(x) = ∑
x′

W(x,x′)I(x′) , (6)

where W(x,x′) denotes the filter weights, calculated as

W(x,x′) =
1

Z(x)
exp

{

−D2(x,x′)

h2

}

. (7)
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off−diag energy: 94
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Figure 1: No shot encoding,
no redundancy, 50 groups of
95 shots (reference matrix).
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off−diag energy: 117.0576
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Figure 2: No shot encoding,
redundancy with 50 groups
of 380 shots.
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off−diag energy: 24.8954
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Figure 3: No shot encoding,
redundancy with 200 groups
of 95 shots.
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off−diag energy: 22.5314
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Figure 4: No shot encoding,
no redundancy, 200 groups
of 24 shots.

Here, h is a parameter that controls de exponential
decrease and Z(x) is a normalization factor, i.e.,

Z(x) = ∑
x′

exp

{

−D2(x,x′)

h2

}

. (8)

Function D(x,x′) is a similarity measure between the
vicinities of image points x and x

′. It is calculated as

D2(x,x′) = ∑
d

Ga(d)
[

I(x+d)− I(x′+d)
]2

, (9)

where d represents a dislocation vector of size d and
function Ga(d) = exp(−d2/a2) represents a Gaussian
window in which the parameter a defines the effective size
of the neighborhood.

Numerical results

Weight matrix

To estimate the reduction in crosstalk in the migrated image
achieved by the weights (2) to (5), we evaluate the matrices
W generated by the product (1) of the weights and their
proximity to the identity matrix. An important number in
this sense is the energy ratio between the off-diagonal and
diagonal of matrix W. The lower this number, the better W
approximates the Kronecker delta.

For our tests, we have used various groupings of a total of
4750 shots. If not mentioned otherwise, the comparisons
are done with 50 groups of 95 shots each, i.e., no
redundancy of shots. For a better visualization, the figures
represent only the first 500×500 array elements. The
number in the upper left corner of each figure is the
ratio bewteen the off-diagonal and diagonal energy of the
matrix, for simplicity from now on referred to as “energy
factor”. Note that for groups of K shots, without encoding
the energy factor always takes the value K−1.

No encoding. Figure 1 shows the matrix W without shot
encoding, i.e., for unit weights, wgk = w̃gk = 1. The choice
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Figure 5: Continuous
random phase encoding.
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Figure 6: Random phase
encoding, da fase, 16 levels.
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Figure 7: Random phase
encoding, 10 levels.
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Figure 8: Random phase
encoding, fase, 4 levels.
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Figure 9: Continuous
random amplitude
encoding.
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Figure 10: Random
amplitude encoding, 16
levels.

of used sources was made randomly. We note that in this
case the off-diagonal energy is 94 times greater than the
diagonal energy, corresponding to 95 shots per group, as
expected. When increasing the number of shots per group
by a factor of four, to 380, the energy factor increases to
117 (Figure 2). Also, when maintaining 95 shots per group
and increasing the number of groups to 200, to achieve
the same fourfold redundancy, the energy factor reduced
to approximately 25 (Figure 3). However, with 24 shots in
each of the 200 groups, the energy factor decreased more
strongly, to about 22 (Figure 4). Thus, for a given number
of groups, one should use a minimum of sources per group.
The use of shot redundancy is counterproductive.

Random phase encoding. The next set of figures shows
the weight matrices for random phase encoding, for some
possible levels of phase shift according to equation (2), for
the case of 50 gropus of 95 shots. In Figure 5, we see
the result of continuous phase eoncoding, i.e., allowing
for all values between −π and π. Figures 6, 7, and 8
show the corresponding results for 16, 10, and 4 levels,
respectively. We observe that the continuous distribution
yields the strongest reduction of the energy factor.

Random amplitude encoding. Figures 9, 10, 11 and
12 show the corresponding results for random amplitude
encoding, with continuous distribution and 16, 10 and 4
levels. Again, we observe an increase in energy factor for
a decreasing number of levels. In addition, we note that
the magnitude of the diagonal is reduced (colored dots on
the diagonal, where black indicates a unitary value). This
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Figure 11: Random
amplitude encoding, 10
levels.
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Figure 12: Random
amplitude encoding, 4
levels.
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Figure 13: Energy factor as
a function of level number
for random phase encoding.
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Figure 14: Energy factor
vs. level number for random
amplitude encoding.
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off−diag energy: 25.8795
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Figure 15: Continuous
random phase and
amplitude encoding.
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Figure 16: Random phase
and amplitude encoding, 4
levels.

reduction is due to the fact that the product of the weights
is not unitary, as mentioned in the context of equation (3).

The fact that the energy factors decreases for a growing
number of levels, both for random phase and amplitude
encoding, is corroborated in Figures 13 and 14, which
show the energy factor as a function of the number of
levels. We see that in both cases, the factor decays with
increasing number of levels. We tested up to a maximum
of 20 levels. The red dot at the end of the curve represents
the continuous distribution.

Random phase and amplitude encoding. When we
apply random encoding of both amplitude and phase, we
obtain the matrices shown in Figures 15 and 16. We note
that the simultaneous encoding further reduces the power
factor, while the diagonal values are comparable with those
for random amplitude encoding only. The decay of the
energy factor with the number of levels is comparable to
previous cases.

To avoid loss of information due to the reduction of the
diagonal values, we also tested the effect of redundancy for
this type of encoding. Figure 17 shows the weight matrix
for 50 groups of 380 shots and Figure 18 shows the weight
matrix for 200 groups of 95 shots. We observe the same
effect as in the case without encoding, i.e., the energy
factor increases with respect to the same number of groups
without redundancy.
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off−diag energy: 39.3356

0 100 200 300 400 500

0

100

200

300

400

500

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Figure 17: Continuous
random phase and
amplitude encoding, 50
groups of 380 shots.
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off−diag energy: 9.7458
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Figure 18: Continuous
random phase and
amplitude encoding, 200
groups of 95 shots.
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off−diag energy: 94
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Figure 19: Random-sign
encoding.
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Figure 20: Imaginary-unit
encoding.
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Figure 21: Random phase
encoding combined with
imaginary-unit weighting.
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Figure 22: Random
amplitude encoding plus
imaginary-unit weighting.
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off−diag energy: 26.3157
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Figure 23: Random phase
and amplitude encoding
combined with imaginary-
unit weighting.

Correlation coefficient nr.

C
o
rr

e
la

ti
o
n
 c

o
e
ff
ic

ie
n
t 
n
r.

 

 
off−diag energy: 46.9086
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Figure 24: Random sign
encoding combined with
imaginary-unit weighting.

Random-sign and imaginary-unit encoding. Figure 19
shows the result of random sign encoding, equation (4).
This encoding does not reduce the energy factor at all.
Encoding with the imaginary unit, according to equation
(5), reduces this factor by half (Figure 20) by transferring
half the crosstalk to the imaginary part of the image.

Combinations. Finally, we investigate the combination of
the imaginary-unit weight with random signal, amplitude
and/or phase encoding. We note that the combination
with random phase encoding does not achieve a further
reduction of the energy factor (Figure 21). The reason
is that random phase encoding already transfers energy
to the imaginary part of the image, thus not offering the
potential for a further reduction. On the other hand,
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Figure 25: 3D FD migrated data from the SEG/EAGE salt
model, depth slice at depth 680 m, with (a) random and (b)
pattern-minimizing shot selection; (c) model slice.

the combination with random amplitude encoding reduces
the energy factor significantly (Figure 22), reaching the
same level as simultaneous random amplitude and phase
encoding. The combination with random phase and
amplitude encoding does not achieve a further reduction
of the energy factor (Figure 23). Finally, the combination
of imaginary-unit weighting with random sign encoding
reduces the energy factor only to the same level achieved
by imaginary-unit weighting alone (Figure 24).

3D migration tests

We tested random and pattern-minimizing shot selections
in blended-shot migration using random phase encoding,
applied to narrow azimuth data from the SEG/EAGE salt
model with 4750 shots. To enhance the effect of crosstalk,
migration was performed with a redundancy of 10, using
100 groups with 475 shots.

The following figures show depth slices at some selected
depths. To our perception, at some depths the slices using
pattern-minimizing shot selection are of better quality than
those using random shot selection. At all other depths,
the quality is comparable. This is the expected behavior,
since the pattern minimization is supposed to reduce the
probability for correlated shots to appear in the same group.

Figure 25 compares the depth slices at depth 680 m. The
events are clearer in part (b), particularly those close to
the salt body in the center of the image. At 1040 m
depth (Figure 26), we observe a slight improvement in the
definition of the right flank of the salt in Figure 26b.

However, not all parts of the image are visibly better
with pattern-minimizing shot selection. While the salt in
Figure 27b is still easier to delineate, particularly in the
lower part of the image, the shape of the inclusion on the
right side of the image is better represented in Figure 27a.

Our last figure is a slice from below the salt, at depth
2340 m (Figure 28). At this depth, the energy of the events
is already significantly reduced by illumination effects. Still,
the events in part (b) are generally more continuous and
less rugged than in part (a).
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Figure 26: 3D FD migrated data from the SEG/EAGE salt
model, depth slice at depth 1040 m, with (a) random and
(b) pattern-minimizing shot selection; (c) model slice.
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Figure 27: 3D FD migrated data from the SEG/EAGE salt
model, depth slice at depth 1260 m, with (a) random and
(b) pattern-minimizing shot selection; (c) model slice.
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Figure 28: 3D FD migrated data from the SEG/EAGE salt
model, depth slice at depth 2340 m, with (a) random and
(b) pattern-minimizing shot selection; (c) model slice.
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Figure 29: Depth slice at 1040 m depth of (a) SEG/EAGE
salt model; and of the FD migrated section (b) without noise
reduction and with NLM noise reduction with (c) h = 10−4

and (d) h= 1.5 ·10−4.

A posteriori crosstalk reduction

To test the post-migration crosstalk reduction, we have
implemented a 2D version of the nonlocal-means (NLM)
algorithm following the original prescription of Buadès et al.
(2005). Figure 29 compares the results at 1040 m depth
with the original depth slice. The results strongly depend
on the value of parameter h in equation (7). For smaller
h, the processing can remove almost all noise caused
by cross-talk, but some less energetic events are also
attenuated (Figure 29c). In our tests, the characteristics
of the result did not change as a function of depth. This
result demonstrates that it is possible to mitigate crosstalk
using image processing methods.

Conclusions

In this work, we studied possibilities of reducing crosstalk
in blended-shot migration. In the first part, we evaluated
the weight matrix of different encoding techniques.

In these tests, we found that for the investigated encoding
methods, there is no advantage in admitting redundancy
in the number of shots used. The choice of the number
of shots per group should be always the ratio between
the total number of shots and the number of groups to
be realized. The fewer shots there are in each group,
the lower is the off-diagonal energy in the weight matrix.
This conclusion, however, needs to be confirmed in actual
migration tests, since destructive interference might help to
further reduce crosstalk, even if the content of off-diagonal
energy is higher. Also, random amplitude encoding helps
to improve the ratio between the energy on and off the
diagonal. Although this encoding reduces the energy
contained in diagonal, it reduces the off-diagonal energy
more strongly, so that the amplitude of the crosstalk
declines more than the amplitude of the image.

Random phase encoding contributes to the reduction of
crosstalk mainly by the fact that part of the off-diagonal
energy is transferred to the imaginary part of the image.
This effect is exploited to the maximum by applying a
deterministic imaginary-unit weight, which moves every
second term of the crosstalk to the imaginary part. The

strongest reduction of off-diagonal energy in the weight
matrix was achieved by combining this weight with random
amplitude encoding. In our tests, this reduced crosstalk to
approximately a quarter of its nominal value.

In addition to this evaluation of the encoding weights, we
studied how to select the shots to form groups to be
migrated. Comparing a random-selection method with
another one designed to minimize patterns, we observed a
trend of the latter to provide clearer, more easily delineated
events in the image.

Finally, we investigated the possibility of reducing the noise
generated by crosstalk in a processing step applied after
migration by means of the nonlocal-means method. In our
tests, the noise behaved favorably to this method, so that it
was possible to remove much of the crosstalk. This result
demonstrates that it is possible to mitigate the crosstalk
noise by image processing methods.
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