

Thirteenth International Congress of the Brazilian Geophysical Society

Seismic Modeling and RTM Migration on unconventional Hardware
de Bragança, R.S.N. and Silva, R.W.G. PETROBRAS, Lima, Manoel Eusebio et al. UFPe

Copyright 2013, SBGf - Sociedade Brasileira de Geofísica

This paper was prepared for presentation during the 13th International Congress of the
Brazilian Geophysical Society held in Rio de Janeiro, Brazil, August 26-29, 2013.

Contents of this paper were reviewed by the Technical Committee of the 13th
International Congress of the Brazilian Geophysical Society and do not necessarily
represent any position of the SBGf, its officers or members. Electronic reproduction or
storage of any part of this paper for commercial purposes without the written consent
of the Brazilian Geophysical Society is prohibited.
__

Abstract

FPGA’s (Field Programmable Gate Arrays) are silicon
chips with billions of transistors like current
microprocessor chips but, unlike these, all the
interconnection of its internal logic elements are
completely reconfigurable. This unique characteristic
allows a user to instantiate electronic circuits inside an
FPGA by configuring the interconnection in order to
execute a specific computational task. The inherent
parallel nature of the circuits thus allow the FPGA to
perform such task several times faster than current
CPU’s, making them suitable for high performance
computing. In this work FPGA’s are configured to perform
seismic acoustic 2D modeling and 2D acoustic RTM
migration. The computational performance and energy
efficiency are then compared with the traditional CPU
approach.

Introduction

Seismic imaging in geologically complex areas, especially
in sub-salt regions, demands the application of algorithms
that require high computational power, such as RTM
migration. The traditional approach is the use of large
clusters of computers and, more recently, the use of the
GPU's for processing. The goal of this work is to study a
new technology based on FPGA chip's that demonstrates
promising for implementing these types of algorithms
which may, in a proper hardware, to achieve superior
performance than GPU's and with the advantage of doing
it with less energy consumption.

The kernel of the acoustic modeling and RTM migration
implemented in this work is the propagation of the seismic
signal, which is governed by the acoustic wave equation

0
1

2

2

22

2

2

2

=
∂
∂−

∂
∂+

∂
∂

t

p

cy

p

x

p

A numerical solution of this equation is obtained by finite
difference. The classic second order in time, fourth order
in space approximation (2-4 operator) was used and a
future pressure field could be expressed by

()
()

()
()

()
()

()
()

()
()

()
() 1,2

22

,12

22

,2

22

2

22

1,2

22

,12

22

,
1

,,
1

22

2

−−

++
−+

∆
∆−

∆
∆−











∆
∆+

∆
∆

+
∆

∆−
∆

∆−−−=

ji
k

ji
k

ji
k

ji
k

ji
k

ji
k

ji
k

ji
k

p
y

tc
p

x

tc
p

y

tc

x

tc

p
y

tc
p

x

tc
ppp

As imaging condition for RTM migration the criterion of
maximum energy near the first break[2] was used. The
image is constructed by propagating a Ricker pulse in a
softened estimated velocity model and building up an
array of travetimes that record for each grid point, the
time at which the maximum amplitude occurs. The
seismic image is obtained by reverse propagating the
seismograms from the receiver coordinates until the time
recorded in each array element is reached and collecting
the amplitudes of this reverse propagation in their
respective grid points. To prevent unwanted reflections on
the edges of the model, Cerjan’s[3] edge-absorbing
technique has been implemented.

Those algorithms was implemented in a FPGA which is
composed by a set of two-dimensional computational
elements known as logical blocks that communicate
through a programmable interconnection network, as
illustrated in Figure 1.

Figure 1: Internal FPGA structure

Each logical block or CLB is able to perform basic logic
functions and store some data bits.

The interconnection network is fully programmable, so
that it is possible to literally interconnect the outputs of a
logic block to the input of any other. Both the logic
function of each block and the routing therebetween are
programmable via a data sequence supplied to the device
during its initialization. Special input/output blocks are
connected to the device’s pins and are used to connect
the logic to the memory or the computer bus. In addition
to the blocks shown there are additional RAM and
specialized multiplication blocks that significantly increase
the computing power of the device.

MODELING AND RTM ON UNCONVENTIONAL HARDWARE
__

Thirteenth International Congress of the Brazilian Geophysical Society

2

Method

The development took place on two different fronts:
Arithmetic and architecture.

The arithmetic front treats the finite difference operator
inner works while the architecture deals with all the
remaining design responsible for driving the data from
memory to the operator, and vice versa.

We know that the solution of the wave equation by finite
differences requires a large amount of computations and
also a large volume of data traffic with memory. These
are the key elements that need to be optimized. To obtain
the best possible performance, we maximize various
design parameters both in arithmetic and in architecture
fronts.

Arithmetic:

High performance of the finite difference operator can be
achieved basically maximizing the number of
mathematical operations per unit of time and this can be
done in two ways: Increasing the clock speed and
parallelizing the operator computation. In order to
increase the clock rate we must simplify the operator. A
very significant simplification is to use fixed-point math
operations instead of floating point computation,
commonly used in microprocessors. To accomplish this, a
detailed study[5] was made to ensure that the fixed point
representation does not introduce significant errors in the
results. The use of fixed-point operators reduces the
amount of logic required for the computation of finite
differences, contributing positively to the increased clock
frequency of the operator and also allowing a greater
number of concurrent operators to be implemented. Some
smart tricks were employed to achieve further
simplifications of the operator. We can cite for example,
the way to perform a simple by 60 multiplications, which is
necessary for the finite differences operator. Instead of
performing a multiplication by 60 which consumes
considerable resources of logic, it was decided to perform
two multiplications: one for 64 and another for 4 and then
to subtract the results. The gain is the fact that multiplying
by powers of 2 is basically a simple bit shift, and a
complex multiplication circuit was replaced by a much
more simple subtraction.

 Other front is to parallelize the operator mathematical
computation. Tasks that would be performed sequentially
on a microprocessor are then executed concurrently by
independent circuits. With this approach, after the initial
loading of the data, the operator shall be able to compute
a grid point per clock cycle. This set of optimized circuits,
able to solve arithmetic finite difference operator is called
PE (Processing Element). Due to all simplifications made
to the PE, there was a significant reduction in the amount
of resources used by it, which allows to instantiate up to
16 PE's on a single FPGA, and thus 16 grid points can be
processed simultaneously at each clock cycle.

Architecture:

There are two basic strategies for achieving performance
in Architecture: Parallelism and data reuse. We know that
the finite difference operator requires a large volume of
memory data access, and often the same data has to be
read several times, which makes the performance highly
dependent on the memory access bandwidth. This fact is
so critical that becomes a bottleneck in the execution of
tasks, i.e., the processing capability of the 16 PE's ends
up being greater than the ability we have to drive the data
to them. Therefore, pure and simple parallelism is not
enough; we need to think of an efficient data flow,
avoiding unnecessary memory access. The first approach
in this direction is to group the PE's in-line, so that
neighbor PE's shares some of the same input data. This
strategy is limited by the memory access bandwidth,
because as we increase the number of in-line PE’s, more
and more input data is needed do feed them. Given the
characteristics of Stratix III board available, we reach the
maximum number of 4 PE's in-line, which is far less than
the resources available in the FPGA logic, sufficient for
the creation of up to 16 simultaneous PE's. A major
challenge then arises: How to calculate more grid points
without increasing bandwidth memory access? To answer
this question, we need to rethink the finite difference
implementation[4]. To apply the finite difference operator,
traditionally for each grid point calculation of the future
pressure field P2, one previous pressure field grid point at
P0 and the present pressure field P1 region surrounding
the point in question must be read from memory plus the
value of the velocity field at the same point, as illustrated
in Figure 2.

Figure 2: Finite difference stencil for the 2-4 operator.

For the computation of each time step, usually the same
grid point is read several times from memory during the
algorithm execution. Using the RAM blocks available in
the FPGA, a buffer is instantiated in a first-in/first-out
(FIFO) configuration in order to store 4 lines of the current
pressure field. This allow us to read each grid point from
memory just once and making them available to the finite
difference operator along the entire time step, thus
avoiding extra memory I/O. That is done in groups of 4,
as we have 4 PE’s in-line. Figure 3 illustrates this
approach.

DE BRAGANÇA, R.S.N., SILVA,R.W.G, LIMA,MANOEL
__

Thirteenth International Congress of the Brazilian Geophysical Society

3

Figure3: Using FIFO’s to calculate a time step with just one read of each current pressure field grid point.

In resume, the FIFO approach leads to a module which
can read the entire current pressure field data just once
and produce as output, the entire future pressure field
data. One very clever use of this fact is that we can daisy
chain such modules in order to calculate several time
steps almost simultaneously. The number of time steps
that can be evaluated with this approach is limited by the
model size, the amount of block RAM’s and the amount of
logic necessary to construct the PE’s. The FPGA used in
this work allowed us to compute 4 time steps at the same
time, calculating 16 grid points of the future pressure field
on each clock pulse after the FIFO´s are filled.

Seismic Modeling and RTM implementations:

Once created the finite difference machine design, it
needs to be inserted into a larger context for the
realization of Seismic Modeling and RTM Migration. At
this point, the implementation is divided into three: the
Direct Seismic Modeling; whose purpose is the
generation of synthetic seismograms, the Forward
Modeling for Migration; whose goal is to generate the
travel time matrix and the Reverse modeling; whose goal
is to generate the migrated section by reverse
propagating the field data seismograms. Only one of
these implementations is loaded into the FPGA at a time,
according to the desired functionality. Each one of these
implementations requires additional calculations to those
already considered in the finite difference machine.
Fortunately, in contrast to software solutions, all these
calculations are executed in parallel, including the Ricker
source term and the Cerjan damping edges calculation.

After all these elements are instantiated, the FPGA is
ready to perform the modeling or the migration. It is
important to remember that the FPGA board needs to
exchange data with a host computer, which in turn, reads
and writes to disk. So, additional software and drivers was
written and ran on the host to handle this data.

Results and Data Analysis

We carried out the designs of seismic modeling and 2D
RTM acoustic machines. They were tested in simulation
environment and were also deployed on a GIDEL PROCe
III with 1 ALTERA Stratix III FPGA running at 50 MHz.

Were modeled and successfully migrated several
synthetic geological models, including the Marmousi and
Hess model, which input parameters are listed in Table 1.

 Marmousi Hess
Model dimensions
with damping zone

2301 x 751 3601 x 1501

Damping zone 80 80
Cut frequency 60 Hz 45 Hz

Table 1: Modeling and migration parameters

We implemented three different designs: Direct Seismic
Modeling (synthetic seismogram generation), Modeling
for Migration (generation of travel times and amplitude
arrays) and Reverse Migration (generation of the
migrated section). Each version had its runtime
measured. Table 2 compares the FPGA runtime with the
runtime performed by software on an Intel Xeon E5430

MODELING AND RTM ON UNCONVENTIONAL HARDWARE
__

Thirteenth International Congress of the Brazilian Geophysical Society

4

2.66 GHz quad-core. In summary, the FPGA modeled
Marmousi about 30 times faster and migrated about 20
times faster than the CPU.

Design
Version

CPU (s) FPGA (s) # Timesteps

Direct Seismic
Modeling

546 18 8500

Modeling for
Migration

272 11 4500

Reverse
Modeling

476 28 8500

Table 2: CPU vs. FPGA Marmousi runtime comparison

Table 3 shows the execution times for each of the
required steps to perform a direct modeling with
seismogram generation. It can be seen that considerable
time is spent on data flow outside the FPGA, burdening
the total execution time by 46.3%. This result is due to the
lack of software optimization on the host side, responsible
for sending, receiving and processing the data exchanged
with the FPGA board.

Execution
time (s)

Execution
time (%)

FPGA Configuration 0,553 3,2
Sending velocity model

and Ricker pulse to board
0,117 0,7

FPGA runtime
(8500 timesteps)

9,408 53,7

Returning results to host 2,667 15,2
Host post processing 4,771 27,2

Table 3: runtime of each step for Marmousi seismogram
modeling

Table 4 shows the execution performance (expressed in
billions of grid samples processed per second - GS/s) of
direct modeling of Marmousi and Hess models. The result
is slightly better for the Hess model primarily due to its
larger size which improves the FPGA runtime ratio
compared with the remaining tasks.

Marmousi 217 shots

(GS/s)
Hess 99 shots

(GS/s)

Direct
Seismic

Modeling
0,88 1,11

Modeling for
Migration

0,73 0,77

Reverse
Modeling

0,55 0,66

Table 4: Total performance in Giga Samples per second
for Marmousi and Hess models on FPGA platform

The power consumption was also evaluated considering a
real machine running different velocity models and
different scenarios. All experiments were performed
taking the average values of several voltage and current
measurements. Table 5 shows the results comparing the
energy efficiency of modeling and migration of the
Marmousi model.

Marmousi Model
8500 timesteps

Runtime (s)

Mean
processing

power
(Watts)

Total
Energy
(Joules)

Relative
energy

efficiency

Modeling CPU 546 200,32 109375,8 1,00

Modeling FPGA 18 207,86 3741,5 29,23

RTM CPU 748 199,93 149547,9 1,00

RTM FPGA 39 205,71 8022,6 18,64

Table 5: CPU vs. FPGA Marmousi energy efficiency
comparison

In summary, considering the Marmousi model, the FPGA
based approach consumes approximately 29 times less
energy to generate synthetic seismogram and
approximately 19 times less energy to produce a migrated
section compared with the CPU based approach.

Figures 4 and 5 shows respectively the migrated sections
of Marmousi and Hess models, computed by the FPGA.
Due to the precision study conducted, the difference
between the numerical results obtained by the proposed
method and those obtained by software running on CPU
are negligible.

Figure 4: Marmousi migrated section

Figure 5: Hess migrated section

DE BRAGANÇA, R.S.N., SILVA,R.W.G, LIMA,MANOEL
__

Thirteenth International Congress of the Brazilian Geophysical Society

5

Conclusions

This paper presented the development and
implementation of 2D seismic modeling and RTM
migration in a hybrid platform composed of a generic CPU
(host) and a platform accelerator device based
reconfigurable FPGA (Altera ES260E). All equations,
control units, arithmetic unit (PE) etc.. relevant to the
algorithm were implemented in hardware, all described in
Verilog, synthesized and validated, leading to the
following conclusions:

• The proposed platform was able to perform seismic
modeling and RTM migration with better computational
performance and better energy efficiency than the current
computer clusters

The design ran with a relatively low frequency due to
limited I/O resources of the board used (basically memory
I/O bandwidth).

• The proposed system is scalable. It is ease to expand
the computational power with the addition of more
FPGA's on a multi-platform FPGA. In simulations the
performance reached 4.4 GSamples/s for a board with
four FPGA's.

• The computational performance could be further
increased by the use of a suitable FPGA board with better
memory bandwidth and host software optimizations. As
such board does not exist in the market, for better
performance is mandatory the development of a
dedicated board with sufficient I/O bandwidth.

• The FPGA based power efficiency can also be improved
further, as no optimization was implemented yet in order
to reduce consumption.

• The major drawback is the fact that the complexity of
VERILOG development led to a high development time
and the maintenance of designs are difficult, requiring
specialized professionals.

Expectations

• A high-level language OPEN-CL is being ported to
FPGA's, which will greatly reduce the skills required and
the total development type of the designs.

• The growth rate of FPGA internal resources is very
high. This fact allied with the low power profile of FPGA´s
and the use of OPEN-CL, leads us to believe that this
technology could have a solid presence in the high
performance computing scenario in near future.

Future work

Partitioning the model into multiple FPGA's

Acoustic Modeling and RTM migration of 3D models

Development of a suitable hardware platform

Development in OPEN-CL high-level language

References

[1] Eduardo Lopes de Faria, 1986, “Migração antes do
Empilhamento Utilizando Propagação Reversa no
Tempo” , Dissertação de Mestrado, PPPG – Universidade
Federal da Bahia.

[2] André Bulcão, 2004, “Modelagem e Migração Reversa
no Tempo Empregando Operadores Elásticos e
Acústicos”, Tese de Doutorado, COPPE – Universidade
Federal do Rio de Janeiro.

[3] Cerjan,C., Kosloff, D., Reshef, M., 1985, “A
Nonreflecting Bondary Condition for Discrete Acoustic
and Elastic Wave Equations, Geophysics, v. 50, pp. 705-
708.

[4] Medeiros, V W C ; Rocha, R. C. F. ; Pyetro, A. ; Dutra,
B. ; Barros, A. C. ; Liborio, J. C. ; Barbosa, J. P. F. ;
Barros Júnior, S. J. ; Menezes, G. ; Silva Filho, A. G. ;
Lima, M. E., High performance FPGA-based
implementation of the seismic modeling of the RTM
algorithm 2011. In: SC.2011, Seattle, WA,2011

[5] Barros, Abner Correia ; Dutra, Bruno H. T. C. ; Brito,
Vinícius V.; Lima, Manoel Eusebio; Silva Filho Abel
Guilhermino da. Modelo para Avaliação de Desempenho
na Redução de Precisão para FPGAs Aplicados a
Modelagem Sísmica. In: WSCAD-SSC 2011, Vitória – ES

