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Abstract

The structure tensor is a very versatile tool used
in general image processing. It can be used to
detect edges, estimate coherency and local slopes. In
this work we employ the structure tensor to estimate
local slopes. We compare the slopes obtained by
this tool with the slopes obtained by plane-wave
destruction filters. Those two methods were tested
against a synthetic and a real dataset. The slopes
detected through the structure tensor were reliable
and comparable to the ones obtained with plane-wave
destruction filters. Finally, we present an application
for the slopes detected by the structure tensor. We
show how to employ them to filter seismic data along
structures.

Introduction

Determining local slopes is of great interest in seismic data
analysis. They can be used to accomplish many of time-
domain imaging tasks, like normal moveout and prestack
time migration (Ottolini, 1983; Fomel, 2007b). Local slopes
can also be used to interpolate data and filter along seismic
structures (Fomel, 2002; Liu et al., 2010). In this work we
compare the local slopes obtained via the well established
method of plane-wave destruction (Claerbout, 1992) to the
ones obtained using the structure tensor (Bakker, 2002).

The structure tensor was applied to seismic data analysis
and filtering many times before. Bakker (2002) gives a very
comprehensive description of the applications of structure
tensors to seismic data filtering. They can also be used to
identify and create clusters of areas of interest in seismic
data (Faraklioti and Petrou, 2005) and to edge preserving
smoothing by diffusion filtering of seismic data (Hale, 2009;
Lavialle et al., 2007).

Fehmers and Höcker (2003) have proposed to use the
structure tensor to perform structure oriented filtering by
anisotropic diffusion. This procedure results in structure
simplification and make the seismic interpretation process
more agile. Bakker (2002) also tried to address that problem
by using orientation adaptive filtering and edge preserving
filtering with the structure tensor. His work also features the
use of the structure tensor to detect faults. In this paper
we propose to study a third approach, by using structure
prediction filtering (Liu et al., 2010). While Liu et al. (2010)
advocate the use of plane-wave destruction to estimate dips,
we propose to employ the dips detected by the tensor.

The structure tensor

The structure tensor is obtained by simple windowed
smoothing operations and simple differentiation of the image.
It is commonly used to detect lines and regions of interest
in images.

The first order structure tensor is obtained by a first order
Taylor approximation of the squared difference function. This
function sums square differences of point-to-point image
amplitudes between a fixed window W around the analysis
point (x0, t0) and a window shifted by x ≡ (∆x,∆t)T . The
squared difference function is defined as

E(x0,t0)(x)≡ ∑
(i, j)∈W

wi, j
[
P(xi +∆x, t j +∆t)−P(xi, t j)

]2
, (1)

where W is a window around (x0, t0), wi, j are non-negative
weights, and P(x, t) is the image amplitude at the point
(x, t). All the elements of the squared difference function are
summarized in Figure 1.
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Figure 1: Parameters of the squared difference function.
The red square indicates the fixed window around the point
(x0, t0), and the blue one represents the window shifted by
(∆x,∆t). The arrow represents in this example the direction
with no variations on the value of the squared difference
function.

The first order Taylor approximation of P is

P(xi +∆x, t j +∆t)≈ P(xi, t j)+∆xPx +∆tPt , (2)

where Px and Pt are the data derivatives in x and t,
respectively. Prior smoothing it is also necessary to estimate
reliable derivative values from noisy raw data (Faraklioti
and Petrou, 2005). By squaring both sides of the previous
equation, we have a first order approximation to the squared
difference[

P(xi +∆x, t j +∆t)−P(xi, t j)
]2 ≈ [∆xPx +∆tPt ]

2

= xT
[

P2
x PxPt

PxPt P2
t

]
x.

(3)
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By substituting equation (3) on equation (1), we obtain the
first order approximation for the squared difference function

Ẽ(x0,t0)(x)≡ ∑
(i, j)∈W

wi, j xT
[

P2
x PxPt

PxPt P2
t

]
x

= ∑
(i, j)∈W

xT
[

wi, jP2
x wi, jPxPt

wi, jPxPt wi, jP2
t

]
x

= xT
[ 〈

P2
x
〉
〈PxPt〉

〈PxPt〉
〈
P2

t
〉 ]

x

= xT Mx,

(4)

The matrix M is known as the structure tensor and the
symbol 〈·〉 represents the average value produced by the
smoothing procedure with weights wi, j.

Eigenvalues and local image structure

The structure tensor is clearly symmetric. It is also positive
semidefinite, i.e., xT Mx≥ 0, for all x. Indeed, from equations
(3) and (4)

xT Mx = Ẽ(x0,t0)(x)≥ 0, (5)

as long as wi, j are nonnegative.

Since M is symmetric and positive semidefinite, all its
eigenvalues are real and nonnegative and its eigenvectors
are orthogonal. The structure tensor’s eigenvalues and
eigenvectors can be used to detect lines, borders and
regions with constant image intensity.

When there is a linear feature in the image, as sketched in
Figure 1, only one possible direction admits no variations
of the squared difference function value. This direction is
parallel to the linear feature. Recalling equation (4), and
assuming 0 = E(x)≈ Ẽ(x), for x in the direction parallel to
the linear feature observed in the image we have

xT Mx≈ 0. (6)

In fact, by means of spectral decomposition of M, it is
possible to show that such direction is an approximated
eigenvector of M, associated with an eigenvalue close to
zero. The other eigenvalue is greater than zero, because
it corresponds to the eigenvector orthogonal to the linear
feature.

Both eigenvalues λ1 and λ2, solution of the characteristic
equation of M, are explicitly given by

λ1 =
1
2

[〈
P2

x

〉
+
〈

P2
t

〉
+

√(〈
P2

x
〉
+
〈
P2

t
〉)2−4

(〈
P2

x
〉〈

P2
t
〉
−〈PxPt〉2

)] (7)

and

λ2 =
〈Px〉〈Pt〉−〈PxPt〉2

λ1
. (8)

By definition λ1 ≥ λ2 and both are nonnegative. Besides,
any eigenvector associated with λ2 will be parallel to the
direction of a detected linear feature in the image. It is
straightforward to determine v2 = α(〈PxPt〉 ,λ2−

〈
P2

x
〉
)T , for

any nonzero scalar α, and v1 orthogonal to v2. Therefore,

we can estimate the local slope using the orientation of
either v1 or v2, as

σ =


λ2−

〈
P2

x
〉

〈PxPt〉
, if〈PxPt〉 � 0

− 〈PxPt〉
λ1−

〈
P2

x
〉 , otherwise.

(9)

Comparison of slope estimations

We propose to study the tensor properties using the
synthetic sedimentary data of Figure 2 and the historic
field dataset from Figure 3. Proposed by Claerbout (1992),
the first dataset is composed by 200× 200 pixels, spaced
by 8 m in the x axis and 4 ms in the t axis. The second
dataset is a time-migrated seismic image from a historic
Gulf of Mexico dataset (Claerbout and Green, 2010). It
is composed by 250×876 pixels with the time sampling of
4 ms, and spacing between traces considered as unitary.
The data was also filtered with an AGC filter using triangular
weights and half-second window.

Figure 2: Synthetic sedimentary model and the window size
used for the structure tensor.

Figure 3: Real historic dataset from the Gulf of Mexico and
the window size used for the structure tensor.
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In our computational tests, the W window size in the
structure tensor formula was 11× 11 samples. This size
should reflect the characteristic size of the texture of interest
(Weickert, 1999), as show in figures 2 and 3. The window
samples were weighted by

wi, j =
1

ς2π
exp
(
− i2 + j2

ς2

)
, (10)

with ς = 3.5. Those weights were also used in the Gaussian
smoothing process for the data derivatives estimation, but
with ς = 2.5, to avoid over smoothing.

To judge the quality of the slopes obtained by the structure
tensor we compare its results with the ones obtained by
other well established methods. We choose to compare
it with the well-known method of plane-wave destruction
(Claerbout, 1992), as formulated by Fomel (2002). It treats
the plane-wave filter as a time-distance (t-x) prediction-
error filter. We employed the version implemented in the
Madagascar package (Madagascar Development Team,
2012).

By comparing the figures 4 and 5, for the synthetic data, we
can observe that both methods achieved similar results.
This is also observed for the real data, by comparing
figures 6 and 7. Nevertheless, the structure tensor has the
advantage of being faster to run and simpler to implement.

Figure 4: Local slopes estimated with the structure tensor
for the synthetic data.

Structure prediction filtering

There are many ways to accomplish structure-enhancing
filtering of a seismic image, like diffusion filtering of seismic
data (Lavialle et al., 2007) or steering Gaussian elongated
windows along local slope patterns (Haglund, 1991). For
performance testing purposes, we choose to filter along the
structures using plane-wave prediction (Liu et al., 2010).
The filtering scheme is shown in Figure 8.

A trace can be predicted by shifting its neighbours according
to the local seismic event slopes. Consider the prediction
operator Pi, j(σi) as an operator for prediction of trace j
from trace i, according to the local slope pattern σi (see

Figure 5: Local slopes estimated with the plane-wave
destructor for the synthetic data.

Figure 6: Local slopes estimated with the structure tensor
for the real data.

e.g. Fomel (2002) and Fomel (2010) for further details). It’s
possible to predict a trace from a distant neighbor by simple
recursion. So, predicting trace k from trace 1 is simply

P1,k = Pk−1,k · · · P2,3 P1,2. (11)

In this work we propose the use of the structure prediction
with the dips estimated by the structure tensor, instead of
using the ones estimated with plane-wave destruction. After
estimating the slopes, we predict a trace from its neighbors
and stack the predicted traces with the original one. In
that way we accomplish the structure filtering, as shown in
figures 9 and 11, for the real and synthetic datasets.

In Figure 9 the blurring of data near the fault and the
interface between the folded and plane regions is clear. This
is further confirmed by the difference section, in Figure 10.
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Figure 7: Local slopes estimated with the plane-wave
destructor for the real data.

Local slope 
estimation

Weighted 
stacking

Prediction of central 
trace from its 

neighbors

Figure 8: Prediction filtering scheme for the trace in blue.

Figure 9: Structure prediction filtering for the synthetic data.

Figure 10: Difference between filtered and original synthetic
data.

Figure 11: Structure prediction filtering for the real data.

This blurring effect is also visible on the real data, as shown
in Figure 11, and in the difference section, in Figure 12.
Another problem occurs in areas without well defined local
slopes. In these areas the filtering process creates false
seismic structures, as illustrated in the lower right corner of
Figure 11.

To prevent these effects, we decided to follow Liu et al.
(2010) approach and improve the structure filtering by using
similarity based weights for the stacking step. Those weights
are computed with the local similarity proposed by Fomel
(2007a). In this formulation the similarity varies smoothly,
being close to one when the two traces compared are locally
similar and approaching zero when they differ.

To further improve the data staking we also employed a
Gaussian taper. This produces lower weights in stacking for
traces predicted from traces far from the original one, which
diminishes some prediction errors in the stacking (Liu et al.,
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Figure 12: Difference between filtered and original real data.

2010). We multiply each trace by

wk = exp
(
− k2

ζ 2

)
, (12)

where wk is a Gaussian weight function, k is the index offset
between the original and the predicted traces, i.e. for the
original trace k = 0, for a trace predicted using an immediate
neighbour k = 1. The ζ parameter just alters the shape of
the Gaussian. For the synthetic data, we used ζ = 0.02 and
for the real data, ζ = 2.

Figure 13: Structure prediction filtering with similarity for the
synthetic data.

Finally, the filtering results using the six nearest neighbour
traces for the prediction step with similarity stacking weights
is shown in Figure 13, for the synthetic data. The results
for the real data are illustrated in Figure 15. We can see
that the noise was attenuated and the seismic events were
preserved. Also there are very little smearing of the faults
and other interfaces, as shown in the difference between

Figure 14: Difference between the similarity enhanced
filtered data and original synthetic data.

Figure 15: Structure prediction filtering with similarity for the
real data.

the original data and the filtered data in figures 14 and 16,
for the synthetic and real data, respectively.

That is also evident by comparing this last figure with the
original filtering differences, depicted in Figure 10, for the
synthetic data. Thanks to the local similarity, no false events
were created in this filtering, as depicted comparing figures
11 and 15.

Conclusions

The structure tensor is highly correlated with the image local
structure. It provides a fairly good and robust estimation
for seismic data local slopes. The values obtained for the
slopes are also very close to the ones obtained by the plane-
wave destruction method tested. These two statements are
also confirmed by Morelatto (2013), using other synthetic
datasets to perform further tests. One point to keep in
mind is that care should be taken on the smoothing prior
to the data differentiation, to not blur features of interest,
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Figure 16: Difference between the similarity enhanced
filtered data and original real data.

like reflector terminations. Also, one should be careful on
choosing the window size. It should reflect the characteristic
size of the features of interest (Weickert, 1999).

For performance testing purposes, we used the structure
tensor slopes for structure oriented filtering. As seen
in figures 13 and 15, the results were very satisfactory,
removing mostly noise from the data. These results assert
the quality of the structure-tensor based slopes. One of the
advantages of this method is the easy implementation and
fast runtime, since it is basically composed of weighted local
sums over data. In the near future we intend to further
test the structure tensor filtering capabilities. Working
interactively, it is also possible to deal with conflicting dips.
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