
Symplectic scheme and the Poynting vector in the reverse time migration
Edvaldo S. Araujo∗, CPGG/UFBA, Reynam C. Pestana and Adriano W. G. dos Santos, CPGG/UFBA and INCT-GP/CNPQ

Copyright 2013, SBGf - Sociedade Brasileira de Geofı́sica.

This paper was prepared for presentation at the 13th International Congress of the
Brazilian Geophysical Society, held in Rio de Janeiro, Brazil, August 26-29, 2013.

Contents of this paper were reviewed by the Technical Committee of the 13th

International Congress of The Brazilian Geophysical Society and do not necessarily
represent any position of the SBGf, its officers or members. Electronic reproduction
or storage of any part of this paper for commercial purposes without the written consent
of The Brazilian Geophysical Society is prohibited.

Abstract

In this work a new numerical solution for the wave
equation based on the combination of the symplectic
integrators and the expansion of the cosine function
in a series of Chebyshev polynomials is presented.
The method proposed here can march the wavefield
in time, generating stable propagation of seismic
waves free of numerical dispersion. Furthermore,
the new numerical scheme provides the solution
of the wave equation and its first time derivative
without any increase in computational cost. Thus,
the Poynting vector can also be calculated using this
method in a more accurate procedure. Based on the
Poynting vector information a new methodology is also
proposed to separate the wavefields in its upgoing and
downgoing components.

Through numerical examples, this work shows the
applicability of the new method to extrapolate a
wavefield with time steps larger than the ones
commonly used by pseudo-spectral methods, as well
as the ability of this symplectic method to successfully
handle Poynting vector calculations.

Introduction

In the literature, the reverse time migration (RTM) has been
implemented by solving the wave equation through various
mathematical methods. Among the explicit methods, we
have: finite differences (FD), which makes use of the Taylor
expansion (Etgen, 1986); the rapid expansion method
(REM), which makes use of the Chebyshev expansion
(Kosloff et al., 1989; Pestana and Stoffa, 2010) and the
two-step explicit marching method, which makes use of
a polynomial expansion (Soubaras and Zhang, 2008).
Symplectic integrators are another class of methods that
can also be used in RTM.

In mathematics, a symplectic integrator is a numerical
integration scheme for a specific group of differential
equations related to classical mechanics and symplectic
geometry (Yoshida, 1990). Symplectic integrators form
a subclass of geometric integrators which, by definition,
are canonical transformations. These schemes are widely
used in molecular dynamics, celestial mechanics and other
areas of physics. In the RTM, symplectic schemes can
also be used to calculate the analytical solution of the
wave equation and its first time derivative. One aspect
of symplectic schemes is that the calculated wavefield

is used to compute the time derivative of the wavefield
at the same time step. The use of both wavefileds is
useful for absorbing boundary conditions as mentioned
by Bonomi et al. (1998). The symplectic schemes are
also an interesting option for calculating the Poynting
vector, since these numerical methods already provide the
time derivative of the wavefield without any increase in
computational cost.

In this paper, we present a new numerical method to
extrapolate the wavefield in the RTM. The proposed
method is symplectic and utilizes the rapid expansion
method. It also shows a new procedure using the Poynting
vector to separate the wavefield of common shot gathers,
before carrying out the imaging condition in reverse time
migration. Furthermore, it presents the results of using
RTM symplectic integrator combined with REM.

Symplectic schemes for the acoustic wave equation

A Hamiltonian system is a system of equations in the
following form (Chen, 2009):

d~x
dt

=
∂H
∂~p

,

d~p
dt

= −∂H
∂~x

, (1)

where ~x and ~p are n-dimensional vectors of generalized
coordinates and moments, respectively, t is the
independent time variable and H = H(~x,~p) is the
Hamiltonian function. The set of coordinates of the
position and momentum (~x,~p) are called canonical
coordinates.

Considering a system of differential equations governed by
the Hamiltonian

H(~x,~p) = T (~p)+V (~x) , (2)

where T (~p) is the kinetic energy and V (~x) is the potential,
the equations of motion for a unit mass particle is given by:

d~x
dt

=
∂H
∂~p

= ~p ,

d~p
dt

= −∂H
∂~x

= ~f , (3)

where ~f is the force vector and ~p is the moment vector.

The constant density acoustic wave equation

∂ 2P
∂ t2 = c2

∇
2P , (4)

where p = P(x,y,z, t) is the pressure wavefield and c =
c(x,y,z) is the wave propagation velocity in the medium,
can also be rewritten using the Hamiltonian formulation
(Bonomi et al., 1998) as:
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∂P
∂ t

= Q ,

∂Q
∂ t

= c2
∇

2P . (5)

The wave equation (5) allows the use of a family of
symplectic methods for the integration in time. According
to Skell et al. (1997), symplectic methods preserve certain
invariant of the Hamiltonian system, work with remarkable
precision for long integration intervals and are stable for
systems where linear extrapolation step size is sufficiently
small.

Yoshida (1990) presented solutions (symplectic
integrators) for equation (1) which can be also used
for equation (5). One of these solutions is the Stomer-
Verlet method:

Q(n+ 1
2 ) = Q(n)+

1
2

∆tc2
∇

2P(n) ,

P(n+1) = P(n)+∆tQ(n+ 1
2 ) , (6)

Q(n+1) = Q(n+ 1
2 )+

1
2

∆tc2
∇

2P(n+1) .

However, the time interval ∆t used in the discretized
equations (5) should be small enough to achieve stability
and avoid numerical dispersion. To overcome this issue,
we present a new numerical method that originates from
the analytical solution of equation (4) (Araujo and Pestana,
2010; Pestana and Stoffa, 2010) that is given by:

P(t +∆t)+P(t−∆t) = 2cos(L∆t)P(t) , (7)

with L2 =−c2∇2.

Using the REM (Kosloff et al., 1989) in (7), results to:

P(t +∆t)+P(t−∆t)

= 2
M

∑
(k=0)

C2k J2k(∆tR)Q2k

(
iL
R

)
P(t) , (8)

being C0 = 1 and Ck = 2 for k 6= 1. Jk is the Bessel function of
order k, Qk are the modified Chebyshev polynomials and for
2D wave propagation, the value of R is given approximately

by: R = πcmax

√( 1
∆x
)2

+
( 1

∆z
)2 , where cmax is the maximum

velocity in the mesh and ∆x and ∆z are the grid spacings
(Tal-Ezer, 1986).

Equation (7) can now be rewritten as

∂P
∂ t

= Q , and
∂Q
∂ t

= H(P) , (9)

with
H(P) =

2
(∆t)2 [cos(L∆t)−1]P . (10)

Using the REM and the Stomer-Verlet method in equation
(9) a new numerical method called Stomer-Verlet-REM is
formulated i.e.:

P(n+1) = P(n)+∆tQ(n)+
∆t2

2
G(P(n)) ,

Q(n+1) = Q(n)+
∆t
2
[G(Pn)+G(P(n+1))] , (11)

where

G(P(n)) =
2

(∆t)2

[
M

∑
(k=0)

C2k J2k Q2k−1

]
P(n) . (12)

The numerical scheme (11) behaves similarly to the
scheme (8) with respect to the use of Chebyshev
expansion. It is only necessary to calculate the expansion
twice for the first time step. The method provides both
the wavefield P(n+1) and the derivative of the wavefield
with respect to time, which is Q(n+1). Furthermore, it is
interesting that the calculated wavefield P(n+1) is used in
the same time step to calculate Q(n+1). This characteristic
allows a mechanism to reverse the direction of propagation
of the wavefield and it can be useful for absorbing boundary
conditions (Bonomi et al., 1998).

In expression (12) one must ensure that the number
of terms used by the Chebyshev expansion provides a
good approximation of the cosine function such that the
wavefield extrapolation can occur in a stable form. Tal-Ezer
(1986) mentions that the Chebyshev expansion converges
for M ≥ R∆t.

Other families of symplectic integrators with different
integration orders can be used in the equation (9). The
higher the order, the more accurate is the result, i.e., the
numerical solution is closer to the exact solution.

To demonstrate the applicability and efficiency of the
proposed symplectic method, we implemented equations
(11) and (12) and we migrated the Marmousi synthetic
dataset. The velocity field mesh has 369 points in the
horizontal direction (x) and 375 in the vertical direction (z)
and the spacings are ∆x = 25 m and ∆z = 8m. Figure 1
shows the result of pre-stack RTM for the Marmousi model.
The result of the RTM using the 240 shot gathers shows
that the numerical algorithm performed well and produced
a successful result for the Marmousi model. Furthermore,
the symplectic scheme used a time sampling interval of
4ms, which is the original time interval of this seismic
dataset, and it did not present any stability issues neither
numerical dispersion, once it uses REM for approximating
the cos(L∆t) function.

Figure 1: Migration result of the Marmousi model using
the proposed symplectic method based on the solution of
equations (11) and (12).

Poynting vector applications

The symplectic schemes are of great interest for pres-
stack RTM. Normally, in this type of migration, the
imaging condition used is the zero-lag cross-correlation
between the extrapolated source wavefield and backward
propagated receiver wavefield. This type of imaging
condition correlates all kinds of wave, including head
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waves and turning waves which are neither derived from
reflections nor from backscattering waves. The correlation
of these waves generates artifacts in the migrated image
(Yoon and Marfurt, 2006). In order to eliminate these
artifacts, several strategies have been presented in the
literature. Yoon and Marfurt (2006) developed a filter based
on the Poynting vector and Bulcão (2004) presented the
idea of using the Poynting vector to separate the wavefield
in its ascending and descending components and use only
the descending part in the imaging condition.

In order to calculate the Poynting vector ~S, the time
derivative of the wavefield and its gradient need to be
computed and it is given by (Bonomi et al., 1998):

~S =−Q∇P . (13)

The symplectic schemes have naturally provided the time
derivative of the wavefield with good accuracy. So, it is
only necessary to calculate the gradient field to obtain the
Poynting vector accurately.

Figure 2(a) shows a small part of the BP model, which is
a structurally complex model containing a salt body in the
middle of the model. Figure 2(b) presents a snapshot of the
source wavefield computed using the BP model. Figures
3(a) and 3(b) show the snapshots of the components of
Poynting vector ~S at the same instant for the snapshot
shown in Figure 2(b).

In the work presented by Bulcão (2004), one uses the
Poynting vector and the normalized derivative of the energy
to make the separation of the wavefield. In this paper, we
present a new form of separating the wavefield. For this,
we calculate the angle of the direction of propagation of
the wavefield, through the Poynting vector, i.e.:

θ = arctan
(

Sz

Sx

)
. (14)

The ascending part of the wave field is considered where
θ ∈ [0;π] and the descending wave for θ ∈ [0;−π]. With
these definitions, one can select the part of the wavefield
of interest. The great advantage of this procedure is that
it does not alter the amplitudes of the wavefield. Figures
4(a) and 4(b) show the results of the application of this
methodology in the wavefield at a given instant of time and
show the result of applying this technique for the snapshot
of Figure 2(b).

The Poynting vector can also be used to generate common
image gathers (CIGs) in the reflection angle domain.
Figure 5 shows some CIGs in the angle domain for a small
part of the 2004 BP 2D dataset. As the correct velocity
model was used to migrate this dataset, a good continuity
of events can be observed in the horizontal direction.

Numerical results

A very common procedure to remove the low frequency
noise present in the RTM images is to generate CIGs in
the reflection angle domain and stack only the angles that
are not contaminated by the low frequency noise, which
are produced by the cross-correlation imaging condition.
Using the symplectic scheme combined with the REM we
can obtain source and receiver extrapolated wavefileds and
generate the CIGs through the application of the Poynting
vector. To test and validate the method proposed here,

(a) (b)

Figure 2: (a) Salt dome part of the BP model and (b) a
source wavefield snapshot.

(a) (b)

Figure 3: Poynting vector components computed using the
BP Model: (a) Sx and (b) Sz.

(a) (b)

Figure 4: Separated wavefieds: (a) upgoing and (b)
downgoing wavefields

we use the BP 2D model 2004. Figure 6 shows the
migration result of the 2004 BP 2D dataset using the CIGs
reflection angles from 0◦ to 60◦. Figure 7 shows the image
using the reflection angles in the range between 61◦ and
90◦. As we can see most of the low frequency noise is
concentrated in the higher reflection angles. However, the
image obtained by stacking all CIGs in the range from 0◦ to
60◦ attenuated some reflections above the salt. To recover
these reflections, a high pass filter was applied to the CIGs
in the range from 61◦ to 90◦ and stacking these CIGs we
obtained the result shown in the Figure 8. Thus, combining
the results shown in Figures 6 and 8, we obtain the final
migrated image (Figure 9) that shows a clearer image free
of low frequency noise. This procedure takes advantage
of information that are usually discarded to attenuate low-
frequency artifacts in the image migrated from RTM.

Conclusions
The new symplectic numerical scheme presented in this
work proved to be a good alternative to RTM. The method
is not limited to a certain range of temporal sampling and
has no problem with numerical dispersion and stability.
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Figure 5: Some common image gathers in the reflection
angle domain from the 2004 BP dataset (reflection angles
0◦ to 60◦).

Furthermore, it allows a more accurate calculation of the
Poynting vector, since this scheme has naturally provided
the time derivative of the wavefield.

This work also presented a new methodology for
separation of the wavefield in any direction using the
desired angular aperture obtained from the computation
of the angle of propagation of the wavefield through the
Poynting vector. One advantage of this technique is that
the amplitude of the wave field is not changed during the
separation process. Thus, the descendents wavefieds
of the source and receivers can be used in the imaging
condition in order to improve the quality of the migrated
image section.

The strategy of using the reflection angles between 61◦

and 90◦, which is usually discarded, is important to image
structures which are masked by noise, especially in shallow
regions of complex geological models.
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Figure 6: Migration result of the 2004 BP 2D dataset using
the CIGs reflection angles from 0◦ to 60◦.

Figure 7: Migration result of the 2004 BP 2D dataset using
the CIGs reflection angles from 61◦ to 90◦.

Figure 8: Migration image of the 2004 BP 2D dataset using
the CIGs reflection angles from 61◦ to 90◦ after high pass
filtering.

Figure 9: Final migration result obtained by summing the
CIGs reflection angles shown in Figure 6 and Figure 8.
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