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Abstract

The common-reflection surface (CRS) method is
a powerful alternative to the traditional common-
midpoint (CMP) stacking, as it enables stacking using
more traces than CMP. The CRS method is based
on a traveltime that depends on three parameters in
the 2D case, and in eight parameters in the 3D case.
Traditionally, to keep computational costs low, these
parameters are estimated based on a sequence of
single-parameter searches, in which each parameter
is estimated in turn, while keeping the others fixed.
Alternatively, a global optimization method can be
used to estimate all parameters simultaneously. In this
paper, we analyze the impact of using such a global
method. We show that the resulting image may be
much improved. We also show that the parameters
estimated using the traditional search may not be
accurate, and may not result in a large coherence when
used in the full CRS traveltime.

Introduction

The common reflection surface (CRS) method (Herteweck
et al., 2007) is a powerful alternative to the common
midpoint (CMP) stacking. Both these methods aim
to provide a simulated zero offset (ZO) image of the
subsurface in time. However, CRS produces images with
higher signal-to-noise ratio than those produced by CMP.
This improvement is made possible by the fact that CRS
uses more traces for stacking than CMP. In fact, the CMP
method is based on the normal moveout (NMO) traveltime,
which gives the traveltime of a reflection event assuming
that all traces have the same midpoint. Thus, the NMO
depends only on the offset; however, the number of traces
used for stacking is limited by the number of traces sharing
a given midpoint. In contrast, the CRS method is based on
the CRS traveltime, which depends both on the offset and
the midpoint. This enables the use of traces on neighboring
CMP gathers1 to be used for stacking.

The CRS traveltime depends on more parameters than
NMO: three in 2D data, eight in 3D data. On the
one hand, this is very advantageous, as this allows
for an adequate use of traces in the neighboring CMP
gathers for stacking. Also, these parameters carry some
information about the geology, and thus may be used for,
e.g., tomography (Duveneck, 2004). On the other hand,

1A CMP gather is the set of all traces sharing a given midpoint.

estimating several parameters may be costly.

Traditionally, the CRS parameters are estimated using
coherence analysis. However, to keep the computational
costs low, they are estimated in a sequence of single-
parameter searches. First, the parameter associated
with the NMO velocity is estimated assuming that the
others are zero. This can be done since this first search
is performed in a single CMP gather, where the CRS
traveltime depends only in the NMO velcoity. Using this
parameter, a stacked image is obtained, and the next
parameter is estimated on this image. This procedure
is repeated sequentially, until all parameters have been
estimated. As an alternative, the CRS parameters may
be estimated using a global optimization strategy, which
searches simultaneously for the combination of all the
parameters with the largest coherency (Garabito et al.,
2012). This strategy yields better results, at the cost of
higher computational complexity.

In this paper, we will study the impact of the global
optimization to estimate all parameters simultaneously. We
will show that there are mainly two differences between the
sequential and the global parameters search strategies.
First, the coherence measures in the sequential search
are computed in sets of data that are not the same to
those used for the CRS traveltime in the global search. As
a consequence, these searches use different coherency
measures. Second, the quality of the estimate of the
parameters in a given stage of the sequential search
depends on the results from the previous stages. This
latter issue causes an intrinsic propagation of the errors
throughout the estimation process, thus degrading the
quality of the final stacking result. The impact of the these
differences are investigated along this work.

The CRS method

In this section, we describe the CRS method, which
produces a simulated ZO section from multicoverage data.
We will focus on 2D data, although the results of this paper
could be extended to the 3D case. We first establish
some notation. Thus, let m0 be the central point, i.e., the
point where the ZO trace is being constructed. As usual,
we associate each trace with a source-receiver pair with
coordinates s and r, respectively. Alternatively, a trace
may be identified by the midpoint m and the half-offset h of
the source-receiver pair. In this case, the coordinates are
related as s = m−h and r = m+h. This setting is illustrated
in figure 1.

The CRS traveltime relates the traveltime of a reflection that
originates at a source in s and is received by a receiver in
r with the two-way ZO traveltime t0 of the same reflection
event. It is written as

tCRS(h,md)
2 = (t0 +amd)

2 +bm2
d + ch2, (1)
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Figure 1: Geometry related to the CRS traveltime, showing
the central point, the zero-offset ray in red, and a source-
receiver pair.

where md = m − m0 is the trace midpoint displacement,
i.e., the difference between the trace midpoint, m, and
the central point m0, the parameters a and b are related,
respectively, to the dip and the curvature of the reflector
image in the stacked section, and c is related to the normal
moveout (NMO) velocity (Jäger et al., 2001). Obviously,
tCRS(h,md) is only an approximation of the actual traveltime,
which is only adequate if neither h nor md are too big.
The selection of the values of h and md that are actually
used by the CRS method at a given central point is beyond
the scope of this paper. Here, we only assume that an
appropriate range of these parameters has been provided.

In figure 2, we show the values of the CRS traveltime as
a function of the midpoint m and the half-offset h for given
values of m0, t0, a, b and c. We show only positive values of
h, but the curve extends symmetrically to negative offsets.
In this curve, the black dot corresponds to the central point
m0 and the time t0 of the simulated ZO trace of interest.
In blue, we show the CRS traveltime for traces with zero
offset, i.e., tCRS(0,md). The black curves that are almost
parallel to this blue curve show the CRS traveltime for
traces with common offset, i.e., with constant h. In red, we
show the CRS traveltime for traces whose midpoint is m0,
i.e., tCRS(h,0). This is a traditional NMO curve. The black
curves that are almost parallel to the red curve correspond
to the CRS traveltime for traces in other CMP gathers.
Using figure 2, we may make several observations that help
to explain the CRS method, and that will be important in
particular when explaining the strategies to estimate the
CRS parameters.

We begin by noting that, as with NMO, the CRS traveltime
can be used to estimate the amplitude of the simulated
ZO trace located at m0: its sample at time t0 is given by
the average of the other traces along the corresponding
traveltime curve, based on the parameters determined for
the given values of m0 and t0. However, note that the NMO
traveltime only depends on h; in fact, tNMO(h) = tCRS(h,0).
As a consequence, the NMO traveltime can only be used
for traces whose midpoint is equal to m0, so that md =
0. This is the red curve in figure 2. In contrast, the
CRS traveltime enables the use of traces with different
midpoints. This explains the better quality of the CRS
results.

Based on figure 2, we can think of the CRS stacking as a
two-step procedure. First, for each CMP involved, we sum
the amplitudes along each of the CMP traveltimes parallel

Half Offset
Midpoint

Time

Figure 2: CRS traveltime as a function of h and m. The
black dot shows the values of m0 and t0 of interest. The
blue curve, and the black curves almost parallel to it, show
the CRS traveltime for traces with the same offset. The red
curve, and the black curves parallel to it, show the CRS
traveltime for traces with a common midpoint.

to the red curve. This is similar to a CMP stack, and creates
intermediate ZO traces, one for each CMP involved. Then,
we average these ZO traces along the blue curve shown in
the figure to produce the final simulated ZO trace at m0 and
sample time t0. This observation motivates the sequential
search strategy of Jäger et al. (2001), to be described in
the sequel.

In the two-step description of the CRS stacking, it is
important to note that there is a single value of c associated
to the central point m0 and the ZO time t0. Thus, the same
value of c is used to generate the several intermediate ZO
samples. Obviously, when computing the simulated ZO
trace at a different central point, a different value of c may
be used, even if the traces with CMP m0 are involved in
the stacking. This observation will help to explain some
differences between the search strategies discussed in this
paper.

As with traditional velocity analysis (Taner and Koehler,
1969), the CRS parameters a, b and c in equation 1 are
estimated from the data by coherence analysis. The idea
is that, for the right parameters, all the traces at time
tCRS(h,md) refer to the same reflection event, so that that
these samples should be coherent, or aligned. Ideally,
then, for every t0 and m0 the CRS parameters could be
estimated as those that generate a traveltime curve along
which the amplitudes of the traces are most coherent. We
refer to this strategy as the global CRS search. In keeping
with the usual practice, the semblance (Neidell and Taner,
1971) coherence measure will be used in this paper. Note
that, for each combination of a, b and c, the semblance is
computed in a window of data around a traveltime surface
as shown in figure 2.

The problem with testing several combinations of the
parameters to determine which one maximizes coherence
is complexity. Indeed, if we want to test say 100 values
of each of the three parameters in the 2D case, we
would have to test one million combinations of parameters.
Considering that we would have to compute the semblance
for each of these combinations, this procedure is clearly
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unfeasible. In the next section, we review the sequential
estimation procedure of (Jäger et al., 2001), which is
widely used to estimate the CRS parameters with lower
complexity.

Sequential Estimate of the CRS parameters

In this section, we review the sequential search for the
CRS parameters proposed in (Jäger et al., 2001). We will
describe this procedure by means of an example, which
will better illustrate the process and highlight some of its
characteristics. To that end, we consider a model with
a single dipping reflector with angle of 10 degrees. We
further consider a homogenous overburden with velocity
2,000m/s. The synthetic data was generated using 96
channels per shot in a split-spread geometry with offsets
2,500 − 150 − 0 − 150 − 2,500m and 50m between the
receivers. The distance between the shots is 200m,
which results in 12 traces per CMP. For the considered
scenario, the CRS parameters are c = 1 × 10−6 s2/m2

and a = 1.74 × 10−4 s/m. Since this is a planar
reflector, we know that b = 0. We focus on the central
point m0 = 7,650m (CMP index 307), at which the reflector
depth is 2,618.79m. In all the results we use the ZO
traveltime t0 = 2.579s, which corresponds to the actual
two-way traveltime of the reflection. We further use an
aperture of 2,500m for the offset and 375m for midpoint
displacement when performing the searches. We also
added random noise to the data, in order to get the average
signal-to-noise ratio (SNR) of approximately −15dB along
the event. This particular set of parameters was chosen
because it reveals several important differences between
the sequential search and the global search.

CMP Search

The first step of the sequential search involves the
estimation of c, which is related to the NMO velocity. To
that end, in order to keep the complexity low, we use a
procedure very similar to the traditional velocity analysis in
the CMP method: we use only traces whose midpoint is
m = m0. In this case, md = 0, so that, for these traces,

tCRS(h,0)2 = t2
0 + ch2. (2)

In other words, for these traces, tCRS(h,md) = tNMO(h), and
the traveltime only depends on c. The semblance for these
traces is then computed for several values of c, and we
choose the parameter that yields the largest semblance. In
the literature, this is called the CMP search. In figure 3,
we illustrate the semblance values for several values of
c for our example. In this case, the high noise level
(SNR = −15 dB) and the low fold (12 traces) degrade the
semblance estimation to the point that the coherence peak
does not correspond to the correct value of the parameter
c: the peak occurs at c = 1.14 × 10−6 s2/m2 when the
correct value is c = 0.97 × 10−6 s2/m2.

In the global CRS search, we will eventually test parameter
combinations having a = b = 0, and all the values of c used
in the CMP search. Further note that when a = b = 0, then

tCRS(h,md)
2 = t2

0 + ch2. (3)

In this case, tCRS(h,md) does not depend on md, which
seems to indicate that the maximum in this configuration
would be the same as the CMP search. However, in the
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Figure 3: Semblance values for different values of c in the
CMP search.

global search, the semblance involves traces with different
values of md, and not only md = 0 as used in the CMP
search. Referring to figure 2, semblance is computed in
the whole traveltime surface for the global search, while in
the CMP search it is computed only along the red curve.

To illustrate the difference between the semblance in CMP
search and in the global search with a = b = 0, in figure 4
we plot the semblance as a function of c for the global
search, computed using a = b = 0. Compare this result
with figure 3. The smaller value of semblance in the global
search can be explained by noting that, due to the receiver
dip, we expect that, given an offset, reflections at different
midpoints should have different traveltimes. However,
when using a = b = 0, the traveltime only depends on the
offset, so in the global search we compute semblance
using the same time instant for all traces with a given
offset. On the other hand, in the CMP search, we compute
semblance using only traces with midpoint m0. In other
words, when compared to the CMP search, when using
a = b = 0 we compute semblance with more, but incoherent
traces, which usually yields a smaller value of semblance.
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Figure 4: Semblance values for different values of c in a
global CRS search using a = b = 0.
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Angle Search

The next step in the sequential search is to use the value
of c, as determined in the CMP search, to generate a
simulated ZO section, referred to as the CMP ZO section.
The procedure here is similar to the traditional CMP
stacking. From the point of view of the search, what is
interesting is that the traces in the ZO section all have h= 0.
Thus, for these traces, the CRS traveltime simplifies to

tCRS(md,0)2 = (t0 +amd)
2 +bm2

d. (4)

To further decrease complexity, we first assume2 that b= 0,
so that the traveltime reduces to

tCRS(md,0) = t0 +amd. (5)

This is the equation of a line with angular coefficient a.

As usual, the search for a proceeds by coherence analysis,
computed, for each value of a, on a window on the ZO
section around the traveltime in equation 5. This window is
illustrated in figure 5(a). We refer to this step as the angle
search. Here, there are two subtle points to be noted:

• First, the search for a is, to some extent, unrelated to
the actual CRS traveltime. In fact, as we mentioned
when discussing figure 2, in the global CRS search
the traveltime surface uses the same value of c for
all midpoints. On the other hand, each point in the
CMP ZO section was probably obtained with different
values of c.

• Second, the midpoint aperture used in the angle
and curvature searches is generally small, so that
the coherence is computed with few traces. This
may result in coherence measures that are too
optimistic. (Note that the semblance computed from
a single trace is always one.) Further, considering the
semblance equation

S =
∑i∈W

∣∣∑ j∈N ui, j
∣∣2

N ∑i∈W ∑ j∈N
∣∣ui, j

∣∣2 , (6)

where W is the length of the time window, N is the
number of traces and ui, j is the windowed data in
the corresponding domain, note that the denominator
of the semblance computed in the angle search is
related to the sum of the squares of the samples in the
window in figure 5(a). All these samples are the result
of stacking some CMP gather. On the other hand,
as seen in figure 2, the semblance computed using
the actual CRS traveltime would involve the sum of
the squares of several samples in each CMP, before
stacking. As the sum of the squares is different than
the square of the sum, those two sums can be quite
different, even if the same value of c is used to obtain
the samples in the CMP ZO section.

Curvature Search and Stacking

The final step in the sequential search is to estimate b. This
step is referred to as the curvature search, and it uses the

2To see a justification for this and other steps in the sequential
search, the reader is referred to (Jäger et al., 2001).

same ZO section as in the angle search. We also use the
value of a obtained in the angle search, so that now the
traveltime

tCRS(md,0)2 = (t0 +amd)
2 +bm2

d (7)

depends only on b. We then use this traveltime to estimate
b by coherence analysis, following steps similar to those
in the angle search. The window used for computing
semblance is similar to the one shown in figure 5(a); the
difference is that its angle will be fixed, and the window
will have a parabolic shape controlled by b. The subtleties
mentioned in the angle search also apply here.

At this point, we can perform stacking in two ways:

• First, we may refine the ZO section. To that end, we
perform stacking directly on the ZO image obtained
after the CMP search. This stacking is performed
along the traveltime given by equation 7, using the
values of a and b obtained in the angle and curvature
searches. The result is shown in figure 5(b). We refer
to this method as the curvature stacking.

• Alternatively, we may use the pre-stack data, stacking
along the CRS traveltime in equation 1 using the
values of a, b and c obtained by the sequential search.
The result is shown in figure 6(a).
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Curvature Stacking

(b)

Figure 5: (a) Windowing the ZO section to compute the
semblance for a given t0 and a given a. We use b = 0 in
this search. (b) Stacked section obtained by refining the
ZO section from the CMP mode.

Comparing the results of figures 5(b) and 6(a), we see
that stacking with the CRS traveltime using the parameters
estimated by the sequential search leads to rather poor
results in this example. This is explained, to a large extent,
by the poor estimate of c in the CMP search: if a wrong
value of c is used to produce a CRS traveltime surface,
the traces at all midpoints will have a wrong c. Thus,
as discussed in the two-step description of CRS stacking,
all intermediate CMP stacks will be performed with the
wrong c. In other words, the CRS stack cannot recover
from this wrong estimate of c, which results in the poor
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stacking results in figure 6(a). On the other hand, in
many cases, the estimate may be very poor at a given t0
and m0, while it may be reasonable at neighboring central
points. Thus, the CMP ZO section may have a few points
along the reflector image that were well stacked. In the
curvature stacking, since we work on the ZO section, the
sample at t0 and m0 will benefit from the good results of
its neighbors, explaining why the reflector appears more
clearly in figure 5(b).

Also, the CRS stack in figure 6(a) seems to have fewer
artifacts in regions without reflectors. These artifacts,
known as worms (Gamboa, 2007), are a well-known
disadvantage of the CRS method. As we will see, the
global search seems to further mitigate the worms. The
reasons for that are still not fully understood, and are the
subject of current investigation.

Global Search

Probably the most obvious drawback of the sequential
search is that it does not find the optimal estimates of
the parameters, in the sense of maximizing the coherence
for the CRS traveltime in equation 1. As we have
seen in the last section, this may have some serious
consequences, both in the values of the parameters
themselves and on the quality of the result. To circumvent
these problems, while keeping a reasonable computational
complexity, Garabito et al. (2012) proposed a global
optimization strategy based on the very-fast simulated
annealing (VFSA) algorithm (Sen and Stoffa, 2013) to
estimate all the CRS parameters in a single search
procedure. The details of the method are beyond the scope
of this paper. However, since the VFSA may converge
to local optima (Sen and Stoffa, 1995), we employed an
exhaustive search in the simulations presented here to
guarantee the convergence to the global optimum.

To assess the impact of the global search approach, we
consider again the synthetic example used in the previous
section. In figures 6(a) and 6(b), we show a comparison of
the stacked images obtained with the parameters from the
sequential and the global searches, respectively.

2.4

2.6

2.8

3.0

tim
e 

[s
]

300 350 400
cmp index

Sequential CRS Stacking

(a)

2.4

2.6

2.8

3.0

tim
e 

[s
]

300 350 400
cmp index

Global CRS Stacking

(b)

Figure 6: Stacked sections obtained from the CRS
traveltime, using the sequential (a) and the global (b)
search.

To explain the differences between the results, first note
that if one of the stages of the sequential search procedure
fails to find the optimum parameter, the CRS traveltime will
not be able to stack coherently the traces, resulting in a
poor image. More specifically, the estimation of a and b
relies on the stacked section from the CMP gather, which
depends exclusively on the estimated c. In figure 7 we
show the NMO velocity estimates for the sequential (in
red) and the global (in black) searches along the event.
Note that the velocities obtained with the CMP search differ
greatly from the globally optimal velocities. The large errors
in the velocity estimates explain the noisy stacked section
of the sequential CRS.
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Figure 7: Semblance values for different values of c in the
CMP search.

Let us further investigate the global search from the point
of view of coherence. Specifically, we focus again on
CMP index 307 and t0 = 2.579s. In figure 8, we show the
semblance for different values of the parameters a and c,
while making b = 0. We use b = 0 (the correct value of
the parameter) to make the visualization easier. However,
plots of semblance varying the three parameters have been
shown in (Garabito et al., 2012). In this figure, we also
show the estimates obtained by the sequential search and
the global search. As we can see, the global search
does a very good job at estimating both parameters in this
case, while the sequential search fails to produce a good
estimate of c. (As we mentioned before, the estimate of
a in the sequential search may be good, as long as the
estimate of c is reasonably accurate in enough points inside
the window where the coherence for a is computed.)

As discussed earlier, the bad estimate of c in sequential
search is due to the noise that degrades the semblance
evaluation, which leads to a coherence peak at a wrong
value of c. The same is not observed in the coherence
of the global search in figure 8: the semblance has a well
defined peak at the optimal set of parameters of the CRS
traveltime. This is because the semblance in the global
search is evaluated using a much larger dataset than in the
CMP search. In our example, while the CMP search uses
samples from 12 traces, the global search uses samples
from 372 traces (the spacing between CMP’s is 25 m, there
are 12 traces per CMP and −375 ≤ md ≤ 375 m). This
means that, for a given SNR, the global semblance is more
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Figure 8: Semblance versus a and c. The curvature
remains fixed at its correct value, b = 0. We also
show the parameters estimated in the sequential search
(a = 1.65 × 10−4 s/m and c = 1.14 × 10−6 s2/m2)
and in the global search (a = 1.68 × 10−4 s/m and
c = 0.98 × 10−6 s2/m2).

accurate than the semblance of the CMP search.

For a sufficiently low SNR, an event that cannot be seen
in the CMP can eventually be identified in the global
coherence. In figure 9 we show an example that confirms
this statement. We processed the same synthetic data but
with a lower SNR, more precisely −23 dB, and the resulting
CRS stackings of the sequential and global searches are
depicted in figures 9(a) and 9(b) respectively.
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Figure 9: Stacked sections obtained from the CRS
traveltime, using the sequential (a) and the global (b)
search for SNR =−23dB.

This scenario emphasizes the performance difference
between the two strategies: due to the high noise level,
the sequential search is unable to find the correct values of
the parameters of the CRS traveltime in such a way that the
traces are not coherently stacked and the event is missed.
On the other hand, in the global search stacked section, we
can still identify the reflector with reasonable quality.

Conclusions

We discussed the impact of the global optimization to
estimate all the CRS traveltime parameters simultaneously,
and highlighted the advantages of the global search when
compared to the standard estimation strategy for CRS,
which estimates these parameters with sequential one-
parameter searches in different domains. The first step
of the sequential search, which estimates the parameter
related to the stacking velocity, is performed in CMP
gathers, where the coherence is computed in a single
midpoint. This is in contrast to the global search, where
a large number of traces with different midpoints is used,
resulting in coherence values that are less affected by the
noise. We also showed that using a wrong value of c,
such as those produced by the CMP search sometimes,
for stacking with the CRS traveltime may produce bad
results. This advantage of the global search is particularly
important in situations with a lot of noise and/or a small fold,
in which the CMP search may fail to estimate c. We showed
that the angle and curvature searches may produce good
estimates of a and b even when the estimates of c are poor,
as long as enough points have good velocity estimation,
even though their coherence measure is to a large extent
very different from that of the global search. Finally, the
results in this paper seem to indicate that using the CRS
traveltime for stacking seems to produce fewer worms in
the result. This claim needs much more investigation, and
is still the topic of current research.
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