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Abstract   

The validity of the first Born approximation as used in the 
inversion of marine Controlled Source Electromagnetic 
(mCSEM) data is investigated. It is demonstrated that a 
Born based cost-function can lead to potential large 
errors. As an alternative, the Extended Born 
approximation is advocated for here. It represents a 
modest increase in computational effort and gives 
significantly more accurate results.  

 

Introduction 

In order to speed up the computations during 2D and 3D 
inversion of mCSEM data, the first order Born 
approximation (Born, 1933) has been frequently used. 
Zhigang et al. (2008) applied a Born type of inversion to 
data from the Troll field in the North Sea. Yuan et al. 
(2009) inverted data from the Gulf of Mexico employing a 
numerical scheme where the gradient calculation inside 
the inversion loop was based on Born. 

It is well known that the Born assumption can lead to 
erroneous errors in case of larger scattering contrasts. 
This often leads to underestimated values which an 
inversion scheme tries to compensate for by introducing a 
larger fictitious anomalous area is introduced by the 
inversion (blurring). During the recent years a number of 
scattering approximations beyond Born have therefore 
been introduced within EM. These include the Extended 
Born (EB) approximation (Habashy et al., 1993), the 
Quasi Analytical (QA) approximation (Zhdanov et al., 
2000) and the Diagonal Tensor approximation (Song and 
Liu, 2005). For a more complete discussion of 
approximate methods the reader is referred to Gelius 
(2007). 

In this paper we demonstrate that the Born approximation 
is not a good choice when constructing the cost function 
for inversion of mCSEM data. In a previous study 
Gribenko and Zhdanov (2007) proposed to employ a 
Quasi-Analytical (QA) type of cost function. We show 
here that the use of the even simpler Extended Born 
approximation should be equally adequate.  

 

Electric field equation and its approximations  

We assume an inhomogeneous 3D anomaly defined by a 
volume V embedded in a background model 

(homogeneous or layered). The total field response in 
case of EM illumination is described by the electric field 
equation (Hohmann, 1975) 
 

                                                                                        (1) 
 
where the first term on its RHS is the background  field 
and the second (integral) is the scattered response. The 
single and double bar notation implies a 3 dimensional 

column vector and a 3 x 3 matrix, respectively. Here, 
eG  

is the dyadic Green’s function and    the conductivity 

contrast function of the anomaly explicitly given as  

                                    ,                                                   (2) 

where 
b  is the conductivity of the (homogeneous) 

background medium and I is the 3 x 3 identity matrix. 
 
Exact solution 

To ensure convergence by the iterative dissipative 
method (MIDM) (Singer and Fainberg, 1995; Pankratov et 
al., 1995; Gelius, 2007), Eq.(1) is transformed into the 
scattering equation 
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 is the scattered field within the Born 

approximation as given by Eq.(7) and 
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Moreover, a so-called contrastive operator has been 
introduced in Eq.(3), i.e. 
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with the integral operator 
DG  defined in Eq.(10). Based 

on the method of successive iterations (Neumann series) 
the iterative version of Eq.(3) can be constructed as 
(Gelius, 2007) 
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In this paper, Eq.(6) is employed to compute the exact 
solution of the scattering problem considered. 
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Born approximation 

The total field inside the anomalous volume is replaced by 
the background field. Thus Eq.(1) simplifies to the form 

                                                                                        (7)       

 

Extended Born (EB) approximation 

Note that Eq.(1) is also  valid within the anomalous region 
V where it can be simplified by the Extended Born (EB) 
approximation (Habashy et al., 1993 ) which makes use 
of the singularity of the Green’s function when 

0rr


  

                                                                                                                             

                                                                                        (8)                                       

 

where the EB scattering tensor is explicitly given as 

                                               ,                                        (9)                            

in which  

                                                            .                         (10)   

 

mCSEM and the Born approximation 

In later years mCSEM has been introduced as a 
supplementary exploration technique to seismic. Unlike 
seismic, mCSEM is rather sensitive to saturation changes 
in a gas-brine reservoir and can also discriminate better 
between oil and brine. In case of a hydrocarbon reservoir 
(characterized by a significantly lower conductivity than 
the surroundings), guided or refracted diffusive waves are 
generated at reservoir level. These waves are less 
attenuated and can be detected at receivers mounted on 
the seafloor at source-receiver offsets from about 2km 
and above (Eidesmo et al., 2002) (cf. Fig.1). 

 

 

    FIG.1  Guided waves inside hydrocarbon reservoir. 

 

The Born approximation fails to describe the physics of 
mCSEM from several reasons: 

a) From Eq.(7) that the phase of the electric field 
inside the anomaly is the same as that of the 
incident or background field. This is in conflict 
with the observed guided-wave phenomenon. 

b) A possible field perturbation within the Born 
assumption can be calculated from the Fréchet 
derivative (cf. Eq.(7) and considering a change 
in volume cell j with center point 

jr
 ): 

                                                             .        (11) 

Thus, independent of the contrast of the 
scattering volume. This result may potentially 
give rise to large errors as demonstrated below 
when used in a cost-function. 

Consider now the simple scattering model as shown in 
Fig.2. It represents a simplified mCSEM scenario with a 
homogeneous overburden (no sea layer) and a HED 
(horizontal electric dipole) source. In the simulations a 
source frequency of 0.25 Hz was employed. The 
conductivity of the background medium was set to 0.5 
S/m. We consider the inline horizontal electric field 
component. The results obtained using the Born 
approximation are compared with calculations employing 
the exact solution of Eq.(1). In the simulations we assume 
a single receiver located at the origin (cf. Fig.2). 

 

              FIG.2  Numerical test model 

Low-contrast case 

In the first example the conductivity of the scatterer is 
initially set to 0.49 S/m, which represents a weak contrast 
relative the background. We assume a cost-function with 
a Frechet derivative based on Eq.(11) and simulate 
changes in the scattered field in case the contrast 
changes between 1 and 5%. The relative errors in 
magnitude and phase when compared with the exact 
result are shown in Figures 3a and b. Even in this low-
contrast case, the errors are not negligible (error in 
magnitude in the order of 11% and error in phase in the 
order of 2%). 

High-contrast case 

In the second example the conductivity of the scatterer is 
initially set to 0.01 S/m, which represents a strong 
contrast relative the background. We assume again a 
cost-function with a Hessian based on Eq.(7) and 
simulate changes in the scattered field in case the 
contrast changes between 1 and 5%. The relative errors 
in magnitude and phase when compared with the exact 
result are shown in Figures 4a and b. These errors are 
now seen to be erroneous: in the order of 83 - 84% for the 
magnitude and in the order of 14.5 – 15% for the phase. 
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FIG.3  Relative errors in (a) magnitude and (b) phase. Low-
contrast case. 
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FIG.4  Relative errors in (a) magnitude and (b) phase. High-
contrast case. 
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Extended Born versus Born 

In this section a direct comparison between the EB and 
Born approximations is carried out. We employ the same 
test model as sketched in Fig.2 and consider again the 
inline electric field component calculated for a receiver 
placed at the origin. This time we allow the conductivity of 
the scatterer to vary within a large range of values: i.e. 

                                     .. Scattered fields are computed 
based on respectively Eq.(7) (Born) and Eq.(8) (combined 
with Eq.(1)) (EB). Both results are compared with the 
exact solution and relative errors are calculated. 

Figures 5a and b show the relative errors in respectively 
magnitude and phase in case of the Born approximation. 
At both moderate and larger contrasts these errors are 
very large as expected. Figures 6a and b show the 
corresponding results in case of the Extended Born 
approximation. The errors have now been reduced 
significantly and for most contrasts the relative error level 
is between 2 – 4% for the magnitude and less than 1% for 
the phase. 
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(b)                                                                                                          

FIG.5  Relative error in (a) magnitude and (b) phase in case of 
Born approximation. 
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FIG.6  Relative error in (a) magnitude and (b) phase in case of 
Extended Born approximation. 

 

Fréchet derivative in case of EB 

For completeness we will now derive the Fréchet 
derivative to be used in case of Extended Born. 
Combining Eqs.(1) and (8) gives 

                                                                                      (12)          
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From Eq.(12) it follows that (considering a change in 
volume cell j with center point 

jr
 ) 

    

                                                                                      (13) 

where 

         

                                                                                      (14) 

 

From Eqs.(9) and (10) it follows that 
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Finally, by combining Eqs.(14) and (15) we obtain this 
expression for K  

 

 

                                                                                      (16)                                                                                                                                                                                         

where 

 

                                                                                      (17) 

 

Both terms in the Frechet derivative in Eq.(13) are now 
contrast dependent unlike the Born approximation (cf. 

Eq.(11)).  

In the limit of I , Eq.(13) takes the form of Eq.(11) as 

it should. 

 

Conclusions 

This paper has investigated how accurate the Born 
approximation is when used as part of a cost function for 
inversion of mCSEM data. The analysis has been carried 
out employing simple numerical models, and even for 
such idealized cases the Born model is shown to be very 
inaccurate. Moreover, the corresponding Frechet 
derivative within a Born approximation is shown to be 
independent of the contrast of the anomalous (scatterer) 
region. A much improved result can be obtained if the 
Extended Born approximation is being employed. It 
represents a rather modest increase in computational 
effort and ensures a significant improvement in accuracy. 
It is also shown that in case of the Extended Born 
approximation the corresponding Frechet derivative is 
contrast dependent as it should be from a physical point 
of view. 
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