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Abstract  

The objective of this experiment is to evaluate the 
robustness of the FWI method to the presence of 
noise, and whether there is an increase to such 
robustness when regularization is inserted into the 
process. Three types of multiplicative regularization 
terms were applied to the objective functional (total 
variation, L2 and weighted L2) for data with and 
without noise.  

 

Introduction 
 

The ability to generate subsurface images from seismic 
data has been a cornerstone of oil and gas exploration for 
many years. The robustness of the seismic processing 
techniques involved in the creation of these images has 
improved greatly through these years, as the industry 
pushes for more geologically complex objectives. 

One such technique that has gained momentum in recent 
years is the so called Full Waveform Inversion (FWI). 
Initially proposed by Tarantola (1984), FWI describes the 
seismic imaging method as a nonlinear inverse problem, 
where the goal is to create a property model that correctly 
fits its synthetic seismogram to real data, through the 
minimization of the difference of the two datasets. 

However, this nonlinear approach to the seismic problem 
is ill-posed and frequently non-converging. Also, due to 
the computational costs involved in the problem, local 
minimization approaches must be employed, which add 
the chance of the problem converging to local minima. 
The non-uniqueness of the solution caused by the 
presence of local minima has led many authors to 
propose different implementations to FWI, the most 
common being the introduction of a regularizing term to 
the functional which is being minimized (Sun and 
Schuster, 1992; Zhou et al., 2002; Zhdanov, 2003; 
Abubakar et al., 2009). 

Multiplicative regularization was proposed originally by 
van den Berg et al. (2003), as a way to introduce a priori 
information into the inversion scheme. From a 

geophysical point of view, such information could include 
layer continuity, dips and/or properties´ smoothness, 
amongst others. 

In this work, we present three types of multiplicative 
regularization terms, as previously described by van den 
Berg et al. (2003) and Abubakar et al. (2009). The 
objective is to show how each of these terms affects the 
minimization of the objective function when noise is 
added to the data. 

 

Methods 

 

The variant of the FWI method used in this work is based 
on the solution of the acoustic wave equation on the 
frequency domain. Such formulation allows us to explore 
the multiscale approach to the inversion process in a 
more natural fashion. 

To benchmark our results, we applied the process to a 
subset of the Marmousi data set. This version consists of 
a downsample of the original to a resolution of 122x382 
samples, depth first. The result is then expanded by a 
frame 21 samples wide through constant extrapolation, to 
accommodate for the PML (Berenger, 1994) energy 
absorption method. Although this frame is part of the 
medium in the propagation processes, it is made exempt 
from model updating, i.e., the parameters it encloses will 
only update via this extrapolation. 

The observed data was obtained by the very modeling 
process ingrained to the inversion, thus we incur in the 
original inversion sin (the first traditional one). Although 
this is not necessary, it helps to sort some problems out. 
Noisy datasets were obtained by addition of some noise 
from a normally distributed source to each frequency 
component (Figure 1). This addition, though, was 
modulated in frequency by the same source wavelet, so 
noise was less destructive to the higher frequencies. 
Each noisy dataset is associated to a different signal to 
noise ratio. 

Each version of the velocity model is associated with an 
implicit kernel matrix, which encompasses the Helmholtz 
equation [This kernel matrix is the main computational 
concern of the algorithm, both in terms of storage and 
processing], and subsequently with a forward solution 
(modeling). Such association is enforced every time the 
parameter model updates. The functional used is the 
measure, in an L2 sense, of the discrepancy between this 
modeled data and the original data. 
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Figure 1: Input data set, source vs receiver vs frequency vs noise map. Each of the three bands denote a noise level 
(noiseless, 40dB and 10dB, from top to bottom. In each band are nine squares, one for each frequency 

(7,9,11,13,15,17,19,21,23 Hz, from left to right). Each square has all 96 sources (vertical axis) and 382 receivers (horizontal 
axis), and have been scaled by the inverse of the wavelet amplitude for that given frequency, for visual comparison 

purposes. 

 

The smoothed model (Figure 3) was declared as the 
smoothing out of the original model (Figure 2) by a 15x15 
2D moving average filter. The resulting input model for 
the inversion fairly resembles the output from a pre-
processing step such as tomography. 

 

Figure 2: True velocity model (Marmousi). 

 

Figure 3: Smoothed velocity model. 

 

Discussion 
 

The effects of regularization can be seen in figure 4, 
which shows the inversion result for the various noise 
levels and regularization terms. These effects appear as a 
general softening of the contrast between the layers. The 
beneficial aspects become most apparent as noise 
increases on the data, as continuity is better preserved. 
From this we infer that regularization terms are 
unnecessary at low noise data. For a more detailed 

analysis of these results, we extract a trace at 3240m, 
which can be seen in figure 5. 

Without regularization, the noiseless data enables an 
almost perfect matching result down to 220m, some 
wiggling around the true model down to 500m, followed 
by an increasing mismatch. The presence of a low level of 
noise does little to improve that, but as the SNR 
degrades, so does the result. The highest noise level 
provides a mismatch from top to bottom. 

Grouping the results by noise levels (Figure 5), the 
noiseless data set gets mixed results, with better fit 
without regularization up to 1000m, but failing on the 
great velocity inversions far below. Regularization lessens 
this undesirable trend on that portion at the cost of 
smoothing results throughout. 

In the presence of light noise, all regularizations keep the 
deep results bounded in the same range as the true 
profile (Figure 5). Without the regularization term, this is 
true at almost every velocity peak – though interestingly 
not at the troughs. 

Heavier noise benefits even more from the regularization 
term, but none seems very efficient at the poorly 
illuminated depths. 

Conclusion 
 

Our FWI scheme was able to recover the model 
satisfactorily in all cases. The addition of noise, however, 
caused this fit to worsen as the depth increased. 

When no noise was added, the inversion without any 
regularization terms achieved the same results as those 
where a multiplicative regularizer was applied. 
Considering the increased computational cost of these 
extra terms, we conclude that regularization was not 
necessary for our example in the absence of noise. 
However, the addition of noise rapidly degrades the 
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Figure 4: Final results after a single pass through all frequencies in a multiscale approach. Each of the four bands denote a 
different regularization formula (from top to bottom, no regularization, L1 norm, L2 norm and weighted L2 norm). In each band, 
from left to right, the noiseless result followed by 2 decreasing signal-to-noise ratio, namely 80dB and 10dB, the same as the 

data shown on Figure 1. No inference is to be taken from such small pictures apart from the general notion of an earlier 
degradation on the topmost band. Coordinates are shown in grid points, where each point corresponds to 12 m. 

 

 

 

Figure 5: 1D traces extracted from the inverted images at x=3240m. Noiseless (left), low noise (center) and heavy noise 
(right) for all regularization implementations. Results are surimposed to the true model (black) and the  

initial smooth model (red). 
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solutions of the scheme without regularization. The errors 
related to this scheme are mostly due to amplitude 
mismatches of the velocity, while the kinematic part of the 
solution seems to fit the true model. 

For the total variation (L1) term, the kinematic part seems 
to fit the true model for noiseless and noisy data for all 
depths. However, the increase in noise affects the 
amplitude estimation of the L1 term more strongly than in 
the other regularizers. 

The L2 regularization term seems to give the worse 
results amongst the regularizers when noise is added to 
the data. Both a depth misfit and an amplitude error are 
present for deeper layers, suggesting that the continuity 
imposed by the regularization is too dominant to properly 
handle noise. 

The weighted L2 gives the best results for the tested 
operators, especially in the case where strong noise is 
present. One possible explanation can be inferred by the 
governing equations (see Abubakar et al., 2009). While 
the gradient for the L2 regularization term tries to minimize 
the average error energy throughout the model, the 
weighted L2 tries to minimize the error locally before 
averaging the error energy throughout the model. This 
behavior of the weighted L2 norm resembles the one 
observed for the total variation scheme. 
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