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Abstract

This paper presents a new time-domain multiscale full
waveform inversion (FWI) using the rapid expansion
method (REM) to propagate the source and residual
wavefields. Through numerical results, we show
the importance of a multiscale approach to the time-
domain FWI in order to avoid cycle-skipped local
minima. In addition, we show how the REM enables
the propagation of the wavefields with large grid
sampling intervals, free of numerical dispersion, thus
reducing the computational cost when compared to
the conventional finite difference (FD) method.

Introduction

The results obtained by full waveform inversion (FWI) in
the last years confirmed the potential of this method to
yield high accuracy models, even in areas with complex
structures, such as sub-salt layers and near-vertical salt
boundaries (Vigh et al., 2011).

FWI is defined as an optimization problem, in which the
misfit between observed and calculated data should be
minimized (Tarantola, 1984). In this process, a velocity or
density model is updated iteratively, so the predicted data
from the model can match the observed data. Therefore,
FWI depends on two major steps: numerical simulation of
wave propagation and solution of an inverse problem.

Due to high nonlinearity and nonuniqueness of solution,
the main challenge of FWI is to avoid convergence to local
minima, while keeping computational cost at acceptable
levels. However, more accurate inversion algorithms, like
Newton methods, demand more computational resources.
One alternative for this dilemma is to reduce the cost of
the modeling step, using, for example, GPUs (Graphic
Processing Units) (Mao et al., 2012; Wang et al., 2011),
pseudo-analytic methods (Ramos-Martinez et al., 2011)
and super-gathers, like plane-waves (Vigh and Starr, 2008)
or simultaneous sources (Anagaw and Sacchi, 2012).

A different alternative is to take FWI to another domain,
like the Laplace-Fourier domain (Cha and Shin, 2009)
and, principally, the frequency domain (Pratt, 1999). In
these domains is easier to take advantage of an important
property of FWI, that high-resolution imaging is expected
at half the propagated wavelength (Virieux and Operto,
2009). So it is possible to naturally start the inversion from
bigger wavelengths, i.e., lower frequencies and then use

the result as initial model for the higher frequencies, thus
reducing the chance of convergence to local minima. One
can even select a smaller number of optimal wavelengths
(Boonyasiriwat et al., 2009), reducing the computational
cost.

On the other hand, wave propagation in the frequency
domain usually involves inversion of the discretized
Helmholtz operator, making it costly for 3D models. In this
case, time-domain FWI is more feasible than frequency-
domain (Vigh et al., 2009). However, full-bandwidth FWI
in time domain is very affected by cycle-skipping artifacts
(Virieux and Operto, 2009), which leads the convergence
to spurious results.

In this paper, we show how it is possible to implement a
time-domain FWI using a multiscale approach similar to the
frequency-domain, i.e., from lower to higher frequencies.
In addition, we show how the rapid expansion method
(REM) (Pestana and Stoffa, 2010) allows the use of
large grid sampling intervals, free of numerical dispersion,
in contrast with the conventional finite difference (FD)
method, thus, reducing computational cost of wave
propagation at higher frequencies. Through numerical
results using the Overthrust model and the Marmousi
model we demonstrate the applicability and efficiency of
our implementation.

Time-domain FWI

FWI is defined as an optimization problem that seeks to
minimize the error E between an observed data d and a
simulated data, predicted from the model m:

E(m) =
1
2
||d−F(m)||2 , (1)

where F(·) is the modeling operator and ||.|| the L2-norm.
In time domain, the modeled seismic data is generated by
numerical solution of a wave equation, such as the acoustic
wave equation

∂ 2 p(x, t)
∂ t2 = v2(x)∇

2 p(x, t)+ s(x, t), (2)

with p(x, t) being the pressure wavefield, v(x) the acoustic
velocity (representing the model m), ∇2 the Laplacian
operator and s(x, t) a source term. Other equations can be
used, e.g., the anisotropic (Warner et al., 2013) and elastic
(Podgornova and Charara, 2011) wave equations.

The misfit function (equation 1) is highly nonlinear
(Boonyasiriwat et al., 2009) and can be minimized using
a Newton-like method. With this approach, the model m is
updated iteratively:

mk+1 = mk +δmk. (3)

The model update δmk is given by (Ma, 2010)

δmk =−H−1
k gk, (4)
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where H is the Hessian matrix and g is the gradient ∂E
∂m ,

that can be obtained by the adjoint state method (Bunks
et al., 1995). For the acoustic case:

∂E
∂m

=
2
v3

∫ T

0
λ

∂ 2 p(x, t)
∂ t2 dt, (5)

where T is the maximum time recorded on dataset, p is the
forward-propagated source wavefield and λ represents the
back-propagated residual data, i.e., the residual given by:
F(m)−d, is back-propagated using equation 2.

The Hessian matrix, on the other hand, is usually neglected
due to its large size and high computational demand. As an
alternative, a new iterative method is defined as:

mk+1 = mk−αkhk, (6)

with αk being a step size, computed by a line search
algorithm (Nocedal and Wright, 2006), and hk the search
direction, determined by gradient methods such as the
steepest-descent and the conjugate gradient (Ma, 2010),
or quasi-Newton methods, such as the L-BGFS (Deng
et al., 2012).

Time-domain FWI using equation 6 and the adjoint state
method can then be summarized in five steps:

1. F(mk) estimation using forward propagation (equation
2);

2. Gradient (gk) computation using equation 5;

3. Determination of search direction hk;

4. Step size (αk) determination using a line search
algorithm;

5. Model update using equation 6.

In this work, we used the steepest-descent method to
determine the search direction, i.e., hk = −gk. The step
size α was first computed using the adaptive Barzilai-
Borwein method, proposed by Zhou et al. (2006) and then
a backtracking line search (Nocedal and Wright, 2006) was
used to find a step size capable of reduce the misfit.

To test our implementation, we used the Overthrust velocity
model (Figure 1). It has 801x187 samples with an interval
of 25m in both directions, i.e., ∆x = ∆z = 25m. We modeled
115 shots using the finite difference scheme with 2nd and
8th order operators in time and space, respectively, with
maximum offset of 5km and minimum of −5km. A Ricker
wavelet with maximum frequency of 30Hz was used as
source.

Figure 1: Overthrust true velocity model.

The initial model used for FWI is showed in Figure 2.
Usually, lower-resolution velocity analysis methods, like

Figure 2: Initial model for FWI.

travel-time tomography and residual migration, are used to
estimate a good starting model for FWI (Ma, 2010).

Figure 3 shows the result of time-domain FWI using the full-
bandwidth of 30Hz after 30 iterations. The main reflectors
were outlined, but the velocities are incorrect. As was
said before, this kind of inversion is highly affected by
cycle-skipping artifacts, that leads to a local minimum. On
the other hand, the lower frequencies are less affected
by those artifacts (Virieux and Operto, 2009). Therefore,
a multiscale approach is really important to increase the
chance of success of FWI, especially when the initial model
is far from the true model.

Figure 3: Inverted model with full-bandwidth.

Time-domain multiscale FWI

The time-domain multiscale FWI uses the same principle
of the frequency-domain FWI: that large scales, i.e., lower
frequencies, have a better chance to converge to the
global minimum at that scale (Bunks et al., 1995). The
inversion of large scales can then be used as initial model
to shorter scales, reducing the risk of convergence to a
local minimum.

In the frequency domain, this can be achieved more
naturally, because the data is already decomposed in
different wavelengths. However, in time domain, one must
limit the frequency bandwidth of the observed data, as well
as the source wavelet used in the modeling, so that the
scale of FWI is consistent with the current model.

The limitation of the frequency bandwidth is done by
filtering the observed data and the source wavelet. There
are a wide range of filters to choose from. Boonyasiriwat
et al. (2009) show how the Wiener low-pass filter can
obtain an excellent result when the source wavelet is well
estimated. This filter is applied in the frequency domain.
It uses the original wavelet and a target wavelet, with the
same maximum frequency as the desired filtered data:

fWiener(ω) =
Wtarget(ω)W †

original(ω)

|Woriginal(ω)|2 + ε2 , (7)

where W represents the wavelet, † denotes the complex
conjugate and ε2 is a small number to avoid division by
zero.
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We tested the time-domain multiscale FWI on the
Overthrust model, using the same starting model (Figure
2). The maximum frequency of each multiscale iteration
was 6Hz, 10Hz, 14Hz, 20Hz and 30Hz. We ran 30 FWI
iterations for each frequency and the inverted velocity
model was used as initial model for the next frequency.
To filter the data bandwidth, we used the Wiener filter on
equation 7.

Figure 4(a-e) show the result of the inversion for
the frequencies 6Hz, 10Hz, 14Hz, 20Hz and 30Hz,
respectively. It is clear that the multiscale approach
achieved a much better inverted model than the one shown
in Figure 3. One should notice that the lower frequencies
were responsible to recover the most significant structures,
while the higher frequencies yield the high-resolution
details, characteristic of FWI.

(a)

(b)

(c)

(d)

(e)

Figure 4: Results of FD time-domain multiscale FWI using:
(a) 6Hz, (b) 10Hz, (c) 14Hz, (d) 20Hz and (e) 30Hz.

Figure 5 shows the vertical velocity profiles in the horizontal
position of 11.25km of the models in Figures 1, 2, 3 and

4(e). The multiscale inversion was able to match the true
velocity model with great precision.

Figure 5: Comparison of a velocity profile at the horizontal
position equal to 11.25km: true model (red solid line),
initial model (black dotted line), full-bandwidth FWI (green
dashed-dotted line) and multiscale FWI (blue dashed line).

In Figure 6, we show the angle-domain common image
gathers (ADCIG), obtained during a reverse time migration
(RTM) using the following velocity models: (a) initial,
(b) inverted with full-bandwidth FWI, (c) inverted with
multiscale FWI and (d) true. The initial and full-bandwidth
models were not able to completly flatten the events, while
the multiscale FWI succeeded.

(a) (b) (c) (d)

Figure 6: Angle-domain common image gathers at the
position 16.25km obtained with RTM using: (a) initial model,
(b) full-bandwidth FWI model (c) multiscale FWI model and
(d) true model.

It is important to add that for real datasets, low frequencies
and long offsets are not always available. This can
cause poor resolution in deeper regions. Recently, Fei
et al. (2012) proposed a method to create pseudo low-
frequencies to mitigate this limitation.

FWI using the rapid expansion method

As previously stated, simulation of the wave propagation
is one of the main challenges of FWI, and the most
time consuming. Although the conventional 2nd order in
time FD scheme is capable of solving the acoustic wave
equation with good precision, its use is constrained by
stability and dispersion conditions, given (for the 2D case)
respectively by (Bunks et al., 1995):

max(∆x,∆z)>
√

2∆t max(v), (8)

where ∆t is the time interval and ∆x and ∆z are the space
interval; and

max(∆x,∆z)>
min(v)
G fmax

, (9)
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with fmax being the maximum frequency and G a factor that
depends on the order of the FD space operator.

On the other hand, the rapid expansion method (REM)
(Pestana and Stoffa, 2010), when combined with the
Fourier transform to compute the space derivatives, can
march the wavefield with any time step and free of
dispersion. This is specially interesting when higher
frequencies are used in time-domain FWI. In this case, the
FD method needs to use a small grid sampling, to avoid
numerical dispersion, thus, increasing the computational
cost.

The REM uses the exact solution of wave equation:

p(x, t +∆t) =−p(x, t−∆t)+2cos(L∆t)p(x, t), (10)

with −L2 = v2(x)∇2, for the acoustic case. The cosine is
expanded using the method proposed by Tal-Ezer et al.
(1987):

cos(L∆t) =
∞

∑
k=0

C2k J2k (∆tR)Q2k

(
iL
R

)
, (11)

where C2k = 1 for k = 0 and C2k = 2 for k > 0. For 2D case,
R ≈ vmaxπ

√
(1/∆x2)+(1/∆z2). J2k is the Bessel function of

order 2k, and Q2k are the Chebyshev polynomials.

The summation on equation (11) converges exponentially
when k > ∆tR. Therefore, the cosine approximation is
obtained with good precision for k values greater than
∆tR, enabling the use of any time step without stability
issues. In addition, R is in inversely proportional to the grid
sampling, which means that with bigger grid intervals, a
smaller number of terms is required, reducing even further
the computational cost.

Another benefit of the REM is that it can reproduce an
analytic signal with much better precision than the FD, as
showed by (Tessmer, 2011). This can be important in
inversion of real datasets, when FD approximations may
fail to reproduce the true waveform.

Numerical results

To test the effectiveness of REM to reduce the
computational cost of FWI, we selected the Marmousi
velocity model, resized to 767x250 samples, with interval
of 12m in each direction. The true velocity model is showed
in Figure 7.

Figure 7: Marmousi true velocity model.

From this model we created two datasets. One using the
REM, with a time sampling of 4ms; and another using 8th
order FD with time sampling of 1ms, as required by the
stability condition 8. The two datasets have the same
geometry, with 119 shots and at maximum 250 receivers.

Both were generated using a Ricker wavelet with maximum
frequency of 40Hz.

For the inversion, we used a reduced model with 383x125
samples (∆x = ∆z = 24m). The starting model, showed in
Figure 8, is the strongly smoothed true model.

Figure 8: Marmousi initial velocity model.

The selected frequencies for the multiscale FWI were 6Hz,
12Hz, 24Hz and 40Hz. The FWI results were obtained
with 30 iterations at each frequency. The simulated
and observed data were always computed with the same
method, to avoid errors from the incompatibility between
FD and REM.

Figure 9 shows the FWI result using REM for maximum
frequency equal to 40Hz. In general, the improvement is
remarkable, though the deeper layers could have higher
resolution if a better selection of frequencies or a more
suitable acquisition geometry were made. However,
the main purpose of this test was to measure the
computational cost of the methods. The rapid expansion
method took on average 29.56s to propagate the wavefield
during 6s with ∆t = 4ms, which results in 1500 time steps.

Figure 9: Marmousi inverted model using REM FWI.

On the FWI using finite differences, the numerical
dispersion problem arises. The lower frequencies 6Hz
and 12Hz are free of this issue because they satisfy the
dispersion condition (equation 9). However, using a 4th
order operator (G = 5), the 24Hz and 40Hz frequencies
require grid sampling of 12.5m and 7.5m, respectively. This
means an increase of up to ten times in the computational
cost, when compared to the 24m grid.

To prove the necessity of avoiding numerical dispersion,
we ran the 4th order FD FWI using the 24m grid, ignoring
the sampling requirements. Figure 10 shows the result
of inversion, damaged by numerical dispersion, as can be
seen more clearly in Figure 11.

With the 4th order FD operator, the forward wavefield
propagation took on average 46.37s on a 24m sampled grid.
The time sampling is ∆t = 1ms, which results in 6000 time
steps. In this case, the REM was 1.57 times faster and,
even better, free of dispersion.
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Figure 10: Marmousi inverted model using 4th order FD
FWI, ignoring the dispersion condition.

(a) (b)

Figure 11: Velocity model highlight showing the effects of
dispersion on 4th order FD FWI (a), compared with REM
FWI (b).

Additionally, we simulated the forward wave propagation
using 4th order FD on 12m and 7m sampled grids, to
satisfy the dispersion condition for frequencies of 24Hz and
40Hz, respectively. With ∆x = ∆z = 7m, the time sampling
used was ∆t = 0.8ms, to satisfy the stability condition. The
modeling using the 12m sampled grid took, on average,
134.69s, while on the 7m sampled grid, it took 400.57s,
i.e., for the full-bandwidth data (40Hz), the REM was 13.55
times faster, using a more sparse grid (∆x = ∆z = 24m).

We pushed the limit of REM even further, using a grid
spacing of 48m. The result of this FWI is shown in
Figure 12. Despite the natural loss of resolution due
to resampling, the inverted model recovered the main
features of the true model. The modeling took on average
8.94s, 44.81 times faster than the worst case scenario FD
(7m sampled grid). With this result, we prove that the REM
can make time-domain multiscale FWI more flexible, i.e.,
we can use small grid spacing for higher resolution and
large grid spacing to speed up inversion.

Figure 12: Marmousi inverted model using REM FWI with
grid spacing of 48m.

Although a more detailed study should be done to allow
a fairer comparison with the FD method, it is clear
that the ability of REM to propagate the wavefield free

of numerical dispersion and stability issues, can greatly
reduce the computational cost of time-domain multiscale
FWI, specially when high frequencies are used.

Conclusions

In this paper, we showed the importance of a multiscale
approach to the time-domain full waveform inversion, in
order to avoid convergence to local minima.

In addition, we presented a new FWI using the rapid
expansion method to propagate the wavefields in a stable
manner and free of numerical dispersion, avoiding time
and space resampling, as done in the conventional
finite difference method. This can greatly reduce the
computational cost of time-domain FWI, specially at higher
frequencies, making it more attractive over the frequency-
domain FWI.
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