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Abstract

Lithology classification is an important task in
reservoir characterization, one of its major purposes
is to support well planning and drilling activities.
Therefore, faster and more effective classification
algorithms will increase the speed and reliability of
decisions made by geologists and geophysicists.
This paper analyzes ensemble methods applied to
automatic lithology classification. For this, we
performed a comparison between single classifiers
(Support Vector Machine and Multilayer Perceptron)
and these classifiers with ensemble methods (Bagging
and Boost). The results are very satisfactory,
and confirm the advantages of using ensemble
methods. However the trade-off between performance
improvements versus resource utilization shows that
the use of ensemble methods is only necessary when
precision is an extremely determinant factor.

Introduction

Lithology classification is commonly performed by two ways
(Thomas, 2004): core analysis and manual analysis of well
logs by an experienced geologist. In the core analysis
classification, the lithology is identified during the drilling
process and generates accurate results. However, it is
an expensive process and consequently impossible to be
performed at almost all wells. On the other hand, most
drilled wells have available well logs, which may be used
for classification, without the need of core information.
Well logs are obtained through physical measurements
(electrical resistivity, electric potential, natural or induced
radioactivity, among others) made by instruments lowed
into the hole. Figure ?? shows two well logs and the
respective lithology. Lithology classification from well logs
is usually a manual process. Many works such as (Al-
Anazi et al., 2010), (Hsieh et al., 2005), (Santos et al,
2002), (Santos et al, 2003), among others, aim to automate
the lithology classification process. This automation is
generally made using machine learning techniques. Such
techniques receive as input a training data set that has
been classified manually. Thus, with complete information
(input data set already identified), these technique try to
learn how to classify the same data and also how to classify
new entries.

Al-Anazi et al. (2010) used three classifiers: Linear
Discriminant Analysis (LDA), Support Vector Machine

Figure 1: Well logs examples: Gama Ray (GR) e
Spontaneous Potential (SP), and their respective lithology.
The legend of lithology type is in the right side of figure.

(SVM) and Probabilistic Neural network (PNN) in other to
compare the obtained results. To classify three lithology
types, they used four well logs: gamma ray (GR), caliper
log (CAL), neutron porosity (NPHI), and photoelectric log
(PEF). The three classifiers obtained similar rates and SVM
results were superior to 95%. In (Hsieh et. al, 2005) is
made lithology identification of aquifers from geophysical
well logs and fuzzy logic analysis. To construct a fuzzy
lithology system they used four well logs: gamma ray,
borehole compensated sonic (BHC) with sonic porosity
(SPHI) curve, spontaneous potential, and phasor induction
(PI), which is the most useful log in this kind of study. The
identification is based on an inference system composed
by rules, which determine the probability of a set of entries
(well logs) belongs to a lithology type. The authors
identified five lithology types: silt, clay, fine sand, medium
sand e coarse sand. The results were fairly good, reaching
a rate of 90%. Recently, ensemble techniques have also
been used in order to improve the results of lithology
classification based on machine learning techniques. In
(Santos et al., 2002) and (Santos et al., 2003) are used
ensemble methods such as Driven Pattern Replication
(DPR) and ARC-X4 with MLP, to lithology classification
of stratified data and non-stratified data. They used four
well logs: gamma ray, sonic, density and resistivity and
plus the observation’s depth, totalizing five attributes. The
authors identify in the first paper eight distinct lithologies,
and in the second three categories of rock types. It
is demonstrated that in both types of data ensemble
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methods improve the results of the single classifiers.
Following a similar approach, the goal of this paper is
to compare lithology classification by machine learning,
using the single classifiers most promising such as Support
Vector Machine (SVM) and Multilayer Perceptron (MLP),
versus the popular ensemble methods, specially, Bagging
e Boost. Moreover, we aim to distinguish seventeen
lithologies, which are divided into different categories such
as sediments, sedimentary rocks, and salt, among others.

Methodology

To perform the lithology classification and identify the
importance of classification by ensemble methods, several
experiments were conducted. We used two different
classifiers: MLP and SVM, and two different ensemble
methods: Bagging and Adaboost. SVM is a machine
learning technique proposed by Vapnik (1995) that uses
statistical learning. SVM constructs a hyperplane used
to separate sets. The best result is achieved by the
hyperplane that has the largest distance to the nearest
training data point of any set. SVM was originally
developed as a method of linear separation (Cortes
and Vapnik, 1995). It is possible to extend SVM to
separate sets that are non-linear carrying the data to a
higher dimensional space in which they may be separated
linearly. MLP is an artificial neural network (ANN). ANN is
composed of multiple layers of nodes in a directed graph,
with each layer fully connected to the next one. Note
that there is no edge connecting the input layer to output
layer. MLP consists of three or more layers: one input
layer, one or more hidden layers and one output layer.
Generally, data is presented at the input layer, the network
then process the input in the hidden layer. The output layer
provides the final result, i.e., that class the best to fit to
the input data. Moreover, MLP is a feedforward neural
network, that is, data flows in one direction from input to
output (Noriega, 2005). Ensemble methods represent a
set of classifiers whose individual decisions are combined
in some way to classify new examples. By combining
solutions we can improve the results because the reduction
in error can be viewed as arising from reduced variance
due to the averaging over many solutions (Dietterich,
2000). In this work we use the Adaboost (Freund and
Schapire, 1996) and the Bagging (Optiz et al., 1999)
algorithms. There are many ways to construct ensemble,
such as: enumerating the hypotheses, manipulating the
training examples, manipulating input features, among
others. In this paper, both algorithms used are based on
training example manipulation (Dietterich, 2000). Adaboost
algorithm is based on the fact that the performance of
single classifiers is improved when they are iteratively
combined, that is, each subsequent classifier will pay more
attention to the samples incorrectly classified by the earlier
classifier. This way, given a database, each sample is
considered to have the same initial weight (1/number o f
samples). The classifier is then built for that database
and in the end for each sample incorrectly classified, the
weight is summed, defining ε. Each misclassified sample
has its weight updated by a multiplier factor defined by
(1 − ε)/ε. After updating these samples, the rest of the
samples is updated in a way that the sum of all weights
is equal to one. Once again the classifier is built and
the process is repeated until the number of repetitions
previously defined is reached. The Bagging algorithm

is based on the fact that great part of classifying errors
is due to very specific training database choice. This
way, the basic idea is to generate various training sets
from the original database. Each new set may contain
an already included sample or may not contain some
samples. Therefore, for each set created a new function
capable of classifying that set is generated. So, given
a DB database of size N, several training sets DBt are
created. Each training set can have a different number
of elements. Then, a Ct classifier is created for each
DBt and trained. So, for classifying a sample, each Ct
classifier returns its prediction that counts as one vote.
The final classifier C f counts every vote and determines
the answer as the class with most of the votes. This way,
we present a lithology classifier through single classifiers,
SVM and MLP, and lithology classifier using the addiction
of ensemble algorithms, Adaboost and Bagging, in a way
that we have six experiments for lithology classification:
single SVM, single MLP, SVM plus Adaboost, SVM plus
Bagging, MLP plus Adaboost, MLP plus Bagging. More
information about the tests realized is discussed in the next
section. To perform the experiments a machine learning
simulation tool developed by Waikato University called
Waikato Environment for Knowledge Analysis - Weka (Hall,
M et al., 2009) was used. This tool contains a collection of
machine learning algorithms licensed under GPL (General
Public License). The SVM algorithm used in this tool
is LibSVM (Chang and Lin, 2011). A cross-validation
technique was also used, as this method generates more
reliable data than a simple division between test set and
training set. Cross-validation makes possible to use all
the data for training and tests in alternating ways, since
the set is divided into groups. A group is set apart for
classification and the others are used for training. This
process is repeated for each group and the accumulated
rate error is calculated (Hansen and Salamon, 1990). In
this work was used 10-fold cross-validation. To evaluate the
results confusion matrix, precision, recall and f-measure
measurements were used (Fawcett, 2005), (Rijsbergen,
1979).

Experiments and Results

For this work, we used well log information from the
public database of the North Sea, Geological Survey of
the Netherlands (available at: http://www.nlog.nl/
nlog/listAllWellLocations). The wells utilized are
part of the F set, which contains 108 wells, all of them
with latitude and longitude information. The wells were
mapped to their locations for a well-distributed spatial
selection because wells from the same area are likely to
have similar characteristics, which would not generate a
well-diversified base. From the 108 wells, 11 were selected
for acquisition of samples of well logs and lithology.
The needed information (well logs and lithology) were
separated, well logs in a text file and lithology in an image
file. The conversion of lithology information to a text file was
manually done. Each sample contains information on well
depth and five electric profiles: gamma ray (GR), neutron
porosity (NPHI), sonic log (DT), density log (RHOB) and
compensation density curve log (DRHO). The converted
data is available at: http://www.tecgraf.puc-rio.
br/welllogs/data/ArffFiles.zip. After converting
the data, two groups were created, both divided in 17
classes (i.e., lithologies): Group 1 with 53.181 samples;
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Group 2 with 9.996 samples. The second group is a subset
of the first, created for better assessing the behavior of
the Adaboost algorithm, as its principal characteristic is
to replicate the database. The division of the samples by
lithology type is presented at Table ??.

Table 1: Lithologic types and number of samples for each
group.

Lithologic
type

Number of
samples

Number of
samples

(Group 1) (Group 2)
mudstone 5679 795
anhydrite 830 677
claystone 7877 896
limestone 3713 201
chalk 5963 179
sandstone 2861 736
sand 407 407
argilaceous 1670 536
calcareous 795 795
chert 74 74
shale 1554 522
tuff 344 344
clay 13681 1165
shale/sandstone 2822 659
marl 904 407
sandy 3687 536
silty 320 320

The tests were performed using the following parameters:
in LibSVM the kernel function used was the radial basis
function, with parameters c = 8 e γ = 8192 for group
1 and c = 8 and γ = 512 for group 2. In the MLP, a
hidden layer with 11 nodes was used and the learning
rate was 0.3, and the momentum was 0.2 Several tests
were done to analyses the classifiers, both individually
and using ensemble methods. Thus, twelve experiments
were realized: six with Group 1 and six with Group 2.
The experiments were executed in a 64-bits architecture
with 4GB RAM, Intel Core 2 Duo 2.40GHz processor.
Based on confusion matrix, performance measurements
can be calculated. In addition, this matrix is able to
show how the system confuses the resulting classes. The
confusion matrices obtained on this work are available
at: http://www.inf.puc-rio.br/ vleite/confusionMatrices.html.
The time, in minutes, for each of the twelve experiments is
available in the Table ??.

Table 2: Time, in minutes, obtained on realization of the
experiments.

Samples Single Adaboost Bagging

Group 1 SVM 272 15148 2870
MLP 89 598 707

Group 2 SVM 1 254 194
MLP 12 84 138

The amount of correctly classified instances, i.e. the recall
rate, in the experiments is available in Table ??. The results
of f-measure and precision rates are available in Table ??
and Table ??.

Table 3: Time, in minutes, obtained on realization of the
experiments.

Samples Single Adaboost Bagging

Group 1 SVM 90.21% 90.78% 90.25%
MLP 72.76% 72.76% 75.68%

Group 2 SVM 93.39% 94.78% 93.33%
MLP 69.26% 77.73% 73.54%

Table 4: Time, in minutes, obtained on realization of the
experiments.

Samples Single Adaboost Bagging

Group 1 SVM 90.1% 90.7% 90.1%
MLP 71.1% 71.1% 73.6%

Group 2 SVM 93.3% 94.8% 93.2%
MLP 69.2% 77.5% 73.5%

Table 5: Time, in minutes, obtained on realization of the
experiments.

Samples Single Adaboost Bagging

Group 1 SVM 90.% 90.8% 90.3%
MLP 71.8% 71.8% 75.1%

Group 2 SVM 93.5% 94.8% 93.4%
MLP 70.1% 77.7% 74.8%

Analyzing the results, we firstly noticed that the SVM
results were always better than the MLP results, even
if we compare the performance measurements of single
SVM classifier versus MLP using ensemble methods. This
variation denotes that the SVM is better at the classifying
task. One of the factors that can explain the result is
that the MLP implements a global approximation strategy,
while SVM uses a local approximation, besides having
a statistical learning formulation. Based on the rates
presented, it can be noticed that the recall rate for the MLP
was better in the group with more information for training,
although when ensemble methods were used, there was
an improvement in the results, with exception of group
1 with Adaboost. This suggests that MLP networks do
not improve when many data with similar information are
used, although in group 2, the improvements made by
Adaboost are around 7%. The SVM is a better classifier
for lithology identification even when it has large lithological
variation, and the use of ensemble methods provided small
improvements in the performance rates. In some cases,
it obtained the same rates of the single classifier, making
the resource consumption the greater difference, which
makes the use of ensemble methods with SVM practically
impracticable. When we observe the confusion matrix,
we note that the small improvement generated by the
ensemble methods for SVM is due to the fact that some
classes are hard to distinguish. These same classes are
also confused by the MLP. By analyzing, we note that the
confused classes are, mostly, sediments that will make up
sedimentary rocks.

When comparing ensemble methods, we noticed that

Thirteenth International Congress of The Brazilian Geophysical Society



LITHOLOGY CLASSIFICATION 4

Adaboost had better performance than Bagging. We can
attribute this improvement to the way that they are built.
As the Adaboost generates new samples for classifying,
always pay more attention in samples that were incorrectly
classified, in specific cases, it turns out to be better, while
the Bagging method creates subsets of the database,
which may contain an already included sample or may
not contain some samples. These characteristics make
Adaboost more sensitive to data noise, so in a database
with high noise rate, the Bagging method should present
better results.

Conclusions

According to the results of the experiments, we noticed
that a simple SVM classifier provides better results
than a MLP neural network. However, both ensemble
methods (Bagging and Adaboost) provide improvements
in the lithology classification results when utilizing a
MLP neural network. This improvement reached rates
between 4% and 7%, which can justify the choice of
ensemble methods in spite of the greater resources cost
for obtaining results. The use of SVM demonstrated
results much more satisfactory than the use of MLP.
SVM obtained low improvements when comparing the
results of the single classifier against the use of ensemble
methods. Therefore, the trade-off between precision and
the resources consumption shows, in this initial study, that
the use of ensemble methods for support vector machines
is not worthwhile. As future works, we propose to analyze
a noisier database to assess the robustness of the Bagging
method. We also want to improve the differentiation
between the classes that represents sediments.
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