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Abstract

This paper describes how a Bayesian framework
can be modeled and applied on seismic data to
estimate the wavelet. The method works on post-
stack and pre-stack data, in both, the convolutional
forward model is considered, but it differ in how
the reflectivity is calculated from the well log. We
expanded the method to estimate the seismic noise
correlation range jointly with the wavelet, the seismic
noise level and uncertainties. The method is
applied in synthetic and real post-stack seismic data.
The Gaussian assumption for the likelihood models
enables to obtain the analytical expressions for
the conditioned distributions, which allows sampling
from the posterior distribution via Gibbs Sampling
Algorithm.

Introduction

Inversion of seismic data plays a vital processing step
in reservoir modeling and characterization. It helps to
improve exploration and management success, once that
estimates the elastic properties from the seismic data,
which has a great correlation with many petrophysical
properties.

The Bayesian formulation for the inverse problem has
been demonstrated an efficient and robust technique to
estimate uncertainties and obtain multiples realizations of
properties, as can be seen in Bosch et al. (2010), Rimstad
et al. (2012), Buland and Omre (2003b) and Buland and
Omre (2003a).

In this work, we adapted the Bayesian wavelet estimation
method proposed by Buland and Omre (2003a), which
basically estimates the wavelet, its uncertainties and the
seismic noise level. We expanded the method to jointly
estimate the seismic noise correlation range that is related
with its frequencies, which are important knowledge about
the seismic. We also present explicitly how some variables
of the stochastic model were defined in a geophysical
interpretation, and discuss how the conditional distributions
of the Gibbs algorithm is obtained.

The information about the noise correlation can help the
seismic inversion algorithms, once it is associated with the
covariance matrix of the misfit function, which has a great
importance in the optimization process.

The Gibbs algorithm is a Markov Chain Monte Carlo
(MCMC) method similar to Metropolis, which has been
applied in many multidimensional problems, obtaining a
random walk in the parameter space, which approximately,
sample the desired posterior distribution (Geman and
Geman, 1984) (Gelman et al., 2004).

Methodology

In the stochastic model, the distributions are considered
multivariate normal distributions denoted by Nn(µµµ,ΣΣΣ),
where µµµ is the mean vector, ΣΣΣ is the covariance matrix and
n is the dimension of µµµ and ΣΣΣ. Its explicit form is expressed
by the equation below.

p(xxx) =
1

(2π)
n
2 |ΣΣΣ |

1
2

exp
(
−1

2
(xxx−µµµ)T

ΣΣΣ
−1 (xxx−µµµ)

)
(1)

where xxx is a random field that satisfies the multivariate
distribution (Anderson, 1984).

Seismic Model

The forward seismic model is considered the convolutional
model in a discrete setting (Sen, 2006), as shown in
equation 2,

dddo =RsRsRs+eeed (2)

where dddo is the seismic data, sss is the wavelet, eeed is a noise,
RRR is the convolutional matrix formed by the reflectivity rrr that
depends of impedance zzz by the relation below.

rrr =
1
2

∂

∂ t
ln(zzz(t)) (3)

Stochastic Model

Assuming that seismic noise eeed is a Gaussian noise, the
Gaussian likelihood model for dddo with expectation µµµd = RsRsRs
and covariance matrix ΣΣΣd is proposed on equation 4.

p(dddo|µµµd ,ΣΣΣd) = Nnd (µµµd ,ΣΣΣd) (4)

The wavelet sss is also modeled by a Gaussian likelihood
(equation 5), with wavelet expectation µµµs defined by a
simple null vector with ns components.

p(sss|µµµs,ΣΣΣs) = Nns(µµµs,ΣΣΣs) (5)

Based on the convolutional model and these likelihoods
models, a stochastic model is proposed and shown in
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Figure 1: Directed acyclic graph representing the
stochastic model.

the directed acyclic graph (DAG) on figure 1 (Buland and
Omre, 2003b).

Considering that the wavelet expectation µµµs and the
reflectivity rrr are completely known, its associated prior
distributions are delta distributions. The covariance
matrices ΣΣΣs and ΣΣΣd are assumed to be known up to an
unknown multiplicative variance factor σ2

d and σ2
s (equation

6), which its uncertainties are modeled by a constant
prior distribution, because no significant difference was
observed when using other distribution.

∀ vvv ∈ {sss,ddd} : ΣΣΣv = σ
2
v ΣΣΣ0v (6)

The covariance matrices structures ΣΣΣ0v are defined using
the prior knowledge about the variables of interest.

The wavelet covariance matrix ΣΣΣ0s is defined by equation
7, which impose smoothness to the wavelet by the second-
order exponential correlation function on equation 8, and
that its components approaching zero at the ends defining
the variance of each component by equation 9.

ΣΣΣ0st,t′ = δtδt ′νt,t ′ , (7)

νt,t ′ = exp
(
− (t− t ′)2

L2
s

)
(8)

δt = exp
(
− 1

0.02n2
s
(t− (ns +1)/2)2

)
, (9)

The range parameter Ls is defined observing the range
of the seismic vertical variogram, which is assumed to be
approximately equal to wavelet variogram range.

The covariance matrix for the seismic data ΣΣΣ0d is defined
by the sum of an exponential second-order correlation

function with range Ld and a first-order correlation function
with range 32 ms (equation 10). The first-order correlation
function is added only to avoid the matrix singularity
associated with the second-order function.

ΣΣΣ0dt,t′
= exp

(
− (t− t ′)2

L2
d

)
+10−3exp

(
−|t− t ′|

32

)
, (10)

The range parameter Ld is an unknown variable which has
to be estimated in the process, this parameter is related
with the seismic noise correlation and its frequencies,
which are important knowledge about the seismic.

Following the Bayesian rules, the DAG on the figure 1 leads
to the posterior distribution:

p(sss,σ2
s ,σ

2
d ,Ld , |dddo,rrr,µµµs) ∝ (11)

p(dddo|sss,rrr,σ2
d ,Ld)p(sss|µµµs,σ

2
s )

which is impossible to obtain in an analytical way, for this
reason, a MCMC algorithm is necessary. More specifically,
the Gibbs algorithm is used to perform the samples, which
basically consists in, for each iteration, draw the unknown
variables given all the others, and then, calculate the mean
and the uncertainties of the variables of interest.

Algorithm

To develop the Gibbs algorithm, the conditioned
distributions are necessary and need to be calculate
from the posterior. Basically the distributions are obtained
using the equation 11, considering the given variables
constants jointly with the seismic model and the theorem
of conditional distribution of multivariate Gaussian
distributions, and the distribution of a non-singular linear
transformation theorem, presented on Anderson (1984).

The conditional distribution for sss is

p(sss|µµµs,dddo,mmm,ΣΣΣs,ΣΣΣd) = N(µµµs|,ΣΣΣs|), (12)

where the mean and the covariance matrix are

µµµs| = µµµs +ΣΣΣsRRRT (RΣRΣRΣsRRRT +ΣΣΣd)
−1 (dddo−RµRµRµs) , (13)

ΣΣΣs| =ΣΣΣs−ΣΣΣsRRRT (RΣRΣRΣsRRRT +ΣΣΣd)
−1RΣRΣRΣs, (14)

The conditional distribution for the multiplicative variance
factor σ2

v for all vvv ∈ {sss,ddd} is an inverse gamma distribution,

σ
2
v ∼ IG(γv,λv), (15)

with shape parameter γv and scale parameter λv given by:

γv =
nv

2
,λv =

(vvv−µµµv)
T

ΣΣΣ
−1
0v (vvv−µµµv)

2
. (16)

Finally, the conditional distribution for the range parameter
Ld can not be derived analytically, however it is
computationally obtained calculating the posterior
probability on equation 11, for different values of the
parameter Ld , considering that all the other variables
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as fixed parameters. In general the shape of calculated
distribution is clearly normal, so after the calculations,
the conditioned distribution is approximated by a normal
gaussian univariate distribution, enabling the conditioned
samples of Ld .

For each iteration, the algorithm consists on draw the
unknown variables from these distributions, as it is
demonstrated in Algorithm 1, summarizing the Gibbs
sampling.

Algorithm 1 Gibbs sampling algorithm for stochastic
wavelet estimation.

Define initial values for σ2
d , σ2

s and Ld
for i=1, .. , k + n do

Draw sss(i) of N(µµµs|,ΣΣΣs|)

Draw σ2
v (i) of IG(γv,λv) ∀ vvv ∈ {sss,ddd}

ΣΣΣv = σ2
v (i)ΣΣΣ0v ∀ v ∈ {sss,ddd}

Compute p(Ld |dddo,sss,rrr,σ2
d )≈ N(µL,σ

2
L )

Draw Ld of N(µL,σL)
Uptade ΣΣΣd

end for

Examples

To evaluate the algorithm efficiency, the method described
is applied in real and synthetic post-stack seismic data.

The synthetic data is obtained by the convolution of the
reflectivity calculated from the real acoustic impedance well
data with a known wavelet. The aim of this application
is to evaluate the estimation quality when using different
kinds and levels of additional seismic noise comparing
the estimated wavelet with the original wavelet, and the
estimated noise parameter with the parameters used to
generate the additional noise.

The noises are generated by sampling from the normal
multivariate distribution Nn(000,ΣΣΣd), given a correlation range
Ld and noise variance factor σ2

d on equation 10.

The figure 2 shows the mentioned synthetic data, but with
only four examples of noises (figure 2D) with same level but
different correlation range.

The application on real data consists on consider the same
well data to calculate the reflectivity, but the seismic is
considered the real seismic measurement obtained on the
well location.

On Gibbs algorithm, the results are calculated after 50
iterations to ensure the convergence to the posterior
distribution in equation 11.

Firstly, three synthetic seismic were generated by the same
wavelet and same noise correlation range, but with different
noise levels with variance σ2

d = 2.17 103, 8.69 103 and 34.8
103, which corresponds to a signal to noise ratio (S/N)
equals to 20, 10 and 5 respectively.

Figure 3 shows the wavelet mean calculated with the
uncertainty for each point for the three different noise
levels, where can be observed that the uncertainty is
directly related with the noise level, and the wavelet mean
has a good convergence to the original wavelet.

The histogram of the seismic noise variance σ2
d sampled

during the same application (figure 4), which illustrates
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Figure 2: Synthetic data: acoustic impedance from well
log (A); reflectivity (B); synthetic seismic (C); seismic
noises with S/N = 5 sampled from Nn(000,ΣΣΣd) with different
correlation ranges Ld (D), white noise from Ld ≈ 0 in black
(noise 1), noise from Ld = 8ms in blue (noise 2), noise from
Ld = 20ms in red (noise 3), noise from Ld = 32ms in green
(noise 4); and seismic with noise in respective color (E).

the posterior distribution of σ2
d , shows that the distribution

converges to the value that generates the seismic noise,
as can be seen on table 1, which shows the mean of
distribution compared with the value of the noise variance
σ2

d used to generate the noise.

S/R 〈σd〉 (103) Noise variance (103) Error(%)
20 2.21 2.17 1.7
10 9.11 8.69 4.8
5 35.7 34.8 2.8

Table 1: Seismic noise level estimation.

The second test with synthetic data is with three synthetic
seismic generated by the same wavelet, but in this time, the
noise levels are the same and the correlation range varies
to Ld = 8ms, 20ms and 32ms (noises on figure 2D).
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Figure 3: Original wavelet (blue) and estimated wavelet
with uncertainties (black) for three different noise levels,
S/N = 20 in A, S/N = 10 in B and S/N = 5 in C
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Figure 4: Histogram of the seismic noise variance σ2
d

sampled during the algorithm.

The wavelet mean converges to the original wavelet. And
as can be seen on figure 5, the posterior distribution for
Ld also converges to the value that generates the seismic
noises of figure 2.

The last application of the algorithm is with the same real
acoustic impedance, but with the real seismic data on the
location well (figure 6).
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Figure 5: Histogram of the seismic noise correlation range
Ld sampled during the algorithm for different noises.

The estimated wavelet mean calculated with the
uncertainty for each point is shown in figure 7, which
can be observed a reasonable uncertainty. The wavelet
generated in the process, models a seismic that has a
good fit with the experimental seismic data as can be
seem on figure 6.

The histogram of the seismic noise variance σ2
d sampled

during the execution (figure 8) showed that the posterior
distribution converges to a higher value than those used
in the tests with synthetic data. And the histogram of Ld
(figure 9) showed that the posterior distribution have a good
convergence to a mean value (10 ms).

3500 3600 3700 3800 3900 4000 4100 4200
−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

A
m

pl
itu

de

Time (ms)

 

 
Real Seismic
Seismic Mean
Seismic Realizations

Figure 6: Real post-stack seismic data in black, the
synthetic seismics generated by the wavelet samples in red
and its mean in blue.
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Figure 7: Estimated wavelet with uncertainties for the real
seismic data.

The method was also applied in pre-stack seismic data, in
which the reflectivity depends of density, p-velocity and s-
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Figure 8: Histogram of the seismic noise variance σ2
d

sampled during the algorithm (real data).
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Figure 9: Histogram of the seismic noise correlation range
Ld sampled during the algorithm (real data).

velocity from well data (Aki and Richards, 2002), and the
algorithm also showed results that has a good fit with the
real data.

Conclusion

In all the applications, the method presents good results
without any assumption about the wavelet phase. In
synthetic seismic data, not only the estimated wavelet has
a good convergence to the original wavelet, but also the
noise level and correlation range converge to the original
values. In real seismic data, the synthetic seismic obtained
during the execution has a good fit with the experimental
seismic. All this results indicates that the method is viable
and reliable. The information about the noise correlation
can help the seismic inversion algorithms, once that is
associated with the covariance matrix of the misfit function,
which has a great importance in the optimization process.
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