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Abstract

The computation of interval velocities is an old and
persistent problem in seismic analysis, and it is
critically important to an efficient seismic imaging. The
conventional method, Dix equation, is an analytical
expression which permits to easily compute interval
velocities from stacking velocities under certain
assumptions. When stacking velocity function does
not behave properly, Dix equation results in abrupt
variations on interval velocity function, making the
profile unrealistic. Another issue refers to model
building: an accurate interval velocity field forms an
estimate to a stratigraphic velocity model (suitable
for seismic migration), and a possible insertion of
interfaces in interval velocities would help on this
estimation. This paper aims to solve this problem
using an approach different from Dix’s, in order to
get better results. To achieve this, some inversion
algorithms which take smoothness and/or simplicity
of interval velocities in account will be used, making
them more realistic. Inverted models containing
interfaces will be obtained as well, using reflexion
location information through semblance panels. A
discussion of the results, comparing conventional
and applied methods, will be done along this
study. Stacking velocities and semblance values from
synthetic and real data will be used, obtained during
the seismic processing step called velocity analysis.

Introduction

Seismic reflection data and its careful analysis provide
geophysicists with very important information about
subsurface properties; such as depth, thickness and P-
wave velocity of geological formations. All of these
properties can be grouped and be called a velocity model.
Seismic data itself, even when it is processed, does not
yield directly to the knowledge of this velocity model.

A seismic processing step, called velocity analysis,
estimates a velocity function to correct the arrival times of
events in the seismogram for their varying offsets, making
the stacking possible and consequently leading to the
improvement of the signal-to-noise ratio of the data. These
velocity values are called stacking or NMO velocities.

However, stacking velocities do not correspond to the
velocity model: they just serve for normal move-out
correction. The best approximation of the real formations

velocities is called interval velocities, because they really
correspond to the model of a subsurface divided by several
layers with their own thickness and velocities. The stacking
velocities, which are the available data in the end of velocity
analysis, are the root mean square averages of interval
velocities, considering a stratified isotropic velocity model:

U2
j =

1
t j

j

∑
i=1

V 2
i ∆ti (1)

where t j =
j

∑
i=1

∆ti, Vi is the interval velocity at layer i, and

∆ti is the difference between NMO times from current and
previous NMO velocity, according to the summation index.

In order to find the interval velocities, the inversion of the
root mean square operation is needed. Some decades
ago, Dix was the first to solve analytically the problem,
stating the equation which has his name today:
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This equation has been used very frequently in seismic
processing, due to its practicality and simplicity. However,
Dix formula is occasionally unsatisfactory for more
complicated stratigraphy, which has more drastic variations
in the stacking velocity function. There were several
attempts to convey a better solution for this problem. Some
of them take hold of Dix equation itself, and try to get
an optimized solution, generally using least-squares type
optimization.

Method

Non-linear inversion is defined by a model vector and a
non-linear function resulting in predicted data:

dpred = F [m] (3)

and the objective, generally, is to minimize the following
objective function:

φd = dobs−F [m] (4)

In our problem, these terms are:

m = [V1, . . . ,VN ] (5)

dobs = [U1, . . . ,UM ] (6)

F j[m] = dpred
j =
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The presented method is basically a parameter estimation
method for the non-linear problem so called Dix Inversion
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(Harlan, 1999). Non-linear inversion is frequently achieved
with Gauss-Newton type algorithms. This problem can also
be treated as linear by squaring the data parameters and
forward operator in Eq. (7), and then using directly LS
methods (Buland et al., 2011).

Gauss-Newton

Gauss-Newton algorithm generates a least-squares
iterative solution for the non-linear problem. Taylor
series approximation of the non-linear forward function
is implemented, yielding to a least-square system of
equations:

JTJδm = JT
δd (8)

where J is the Jacobian matrix, containing the derivatives
of the object non-linear function (in our case the RMS
operation) in respect of the model parameters; δm is the
increment model vector computed in each iteration, and δd
is the misfit between observed and predicted data.

When possible, Jacobian matrix can be determined
analytically. We can implement that for our problem,
deriving analytically the forward operation for every index
j with respecting to every Vi, which give us:

Ji j =
∂F j[m]

∂mi
=

∂U j

∂Vi
(9)
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The system of equations in (8) can be solved with the
same procedure in a least-square problem, generally using
gradient methods. Once δm is found, the process is
repeated until results are satisfactory. In this paper the
conjugate gradient method was used, which has a rapid
convergence time, and a very small value of ||δm|| was the
criterion to stop Gauss-Newton algorithm iterations.

Model objective function and Tikhonov regularization

Data misfit minimization (Eq. (4)) does not always yield to
the best solution, since observed data are noisy and not
trustful, making the number of possible solutions increase.
In this universe of many solutions, we can eliminate
unstable and unrealistic solutions, taking regard of the
simplicity and smoothness of the desired model. The earth
properties are simple and smooth in general, and formation
velocities for ”soft” rocks are described this way (Harlan,
1999).

Besides that, due to the fact Dix equation deals with
difference of squared NMO velocity, small changes in the
slope of NMO velocity profile yield some large abrupt
changes in interval velocities. An optimization of Dix
equations surely has to take smoothness in regard.

A model objective function is inserted in our inversion, and
its continuous form is (Oldenburg and Li, 2005):

φm(m) = αs

∫
(m−mre f )

2dt +αt

∫
(

dm
dt

)2dt (11)

When this expression is minimized, the first term aims
to select the smallest (simplest) model, and the second
one the flattest (smoothest) model. Smoothness is the
main achievement desired for our problem, which makes
us choose an αt sufficient times higher than αs.

Then we have a total objective function to minimize:

φ(m) = φ d +λφ m (12)

and λ is called regularization parameter, which regulates
the weighting between φ d and φ m. This insertion of model
objective function modifies the Gauss-Newton system of
equations:

(JTJ+λWT
mWm)δm = JT

δd−λWT
mWmm(k) (13)

where WT
mWm can be obtained by the discretization of the

model objective function in Eq. 11, which is:

WT
mWm = αsWT

s Ws +αtWT
t Wt (14)

This damped Gauss-Newton algorithm and the problem
of choosing the best regularization parameter is called
Tikhonov regularization.

Models with interfaces

When a blocky model is desired, discontinuity can be
implemented using an auxiliary matrix B in the model
objective function. Therefore, the system of equations to
be solved is:

(JTJ+λWT
mBTBWm)δm = JT

δd−λWT
mBTBWmm(k) (15)

where B is a diagonal matrix containing 0’s and 1’s in the
diagonal, whenever there is an interface or not, respectively
(Clapp et al., 1998).

Determination of these interfaces locations from seismic
data itself is not trivial. Semblance panels show series
of peaks, which are associated with high probability of
reflections locations, and consequently, interfaces. In this
paper it is suggested the computation of another coherency
measure analogous to semblance, called MUSIC, which
presents higher definition in low-noise data as showed in
other studies (Barros et al., 2012).

MUSIC is related to signal-to-noise energy ratio, and when
signal and noise are uncorrelated, it results to be (Ursin et
al., 2013):

P =
1

1−S
(16)

where S is semblance measure. Notice that 0 ≤ S ≤
1 and 1 ≤ P ≤ ∞, which makes P (MUSIC) show more
individualization of high semblance values, and therefore,
it presents more precision at reflections detection.

Results

1D Case

A synthetic velocity profile was arbitrarily created in order to
test the method on a single inversion (Fig. 1a). Considering
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Figure 1: (a) 1D synthetic model. (b) Resulting velocity
analysis semblance panel, with 1% of additive random
noise for better visualization.
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Figure 2: Inversion results with different regularization
parameters.

a split-spread synthetic seismic data created using this
velocity model, a semblance panel can be computed (Fig.
1b). A manual picking of NMO velocity points is perfomed,
and monotonic interpolation results in a NMO velocity
profile, with a velocity value at each time sample.

Along this NMO velocity profile, values of semblance at
each sample are kept and form a semblance profile (Fig.
3a). In a similar way, MUSIC values form a profile as well
(Fig. 3b), and their peaks will be automatically detected
in order to map interfaces used in discontinuous inversion.
This detection is achieved with a simple algorithm using
a mobile time window, selecting peaky values within the
window as it goes for all time samples.

Regularization parameters were empiracally chosen, since
L-curve technique was applied but it was not sufficiently
successful in this inversion. These parameters were such
that the data misfit would not exceed a certain value, and
closing to the supposed location of the unsuccessful L-
curve corner. A plot showing results depeding on the main
regularization parameter (λ ) is shown in Fig. 2. Once done
choosing, a continous inversion was then applied on the
NMO velocity profile (Fig. 3c).
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Figure 3: (a) Semblance along the NMO velocity profile,
and (b) MUSIC along the same profile. Inversion results:
(c) continuous and (d) discontinuous cases.
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Figure 4: 2D synthetic model.

Using peaks from MUSIC measure, discontinuity locations
are determined and blocky inversion can be applied (Fig.
3d).

2D Case

A synthetic model was created (Fig. 4) based on an area
of Tacutu Basin, whose real data will also be inverted:

Synthetic seismograms were obtained using Gaussian
Beam seismic modeling on this velocity model. These
seismograms were acquired in 320 split-spread shot
gathers, each one containing 100 traces, having 50m of
shot and geophone spacing. Then, seismograms were
sorted into CMP gathers and velocity analysis was applied
jumping 35 CMP’s, in a total of 871 CMP’s, resulting in
25 velocity analyzed CMP’s gathers. NMO velocities were
interpolated for all CMP’s, resulting in a NMO velocity field
(Fig. 5a).

A discontinuous inversion was applied, using MUSIC
measures from those 25 velocity analyzed CMP’s. Peaks
from MUSIC measures were obtained in a similar
manner of the 1D case for each CMP. Incorporating the
discontinuity points into inversion, an inverted model with
interfaces was produced (Fig. 5c).

Real Case

Land real data were acquired by PETROBRAS from the
region of Tacutu intracontinental rift, and they were used in
order to apply the method on a real case, verifying whether
continuous and discontinuous inversion approaches are
possible. Processing steps such as ground-roll filtering
and dip-moveout were already applied by Da Silva (2004),
making seismic data for this paper ready for velocity
analysis.

Once velocity analysis is done for 28 CMP’s, similarly to the
synthetic 2D case, a NMO velocity field is obtained (Fig.
6a). Inversion is applied using these NMO velocity values,
and Dix results are computed as well, in order to compare
both (Fig. 6b and 6c).

Persistent noise level in data made the automatic detection
of interfaces through MUSIC measure inaccurate.
Therefore, a manual picking of interfaces is applied, based
on the stacked section brightest reflectors. Four reflectors
were chosen to be interfaces, and inverted model is
shown in Fig. 6d. NMO velocity field (Fig. 6a) was
laterally smoothed prior to serve as input for discontinuous
inversion.
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Figure 5: (a) NMO velocity field, input for inversion. (b)
2D synthetic model, windowed to the area of interest. (c)
Inverted model, with interfaces, in depth. (d) Comparison
between velocity profiles, taken out from 2D models (b and
c), at 13.55 km in x position.
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Figure 6: (a) NMO velocity field (input data for inversion).
(b) Conventional result by Dix formula, and (c) Inversion
result. (d) Inversion with interfaces.

Conclusions

The regularized and linearized inversion has achieved the
objective of obtaining plausible velocity models, which
are not obtained in some situations by Dix formula. In
presented real case, especially, the continuous inversion
result was way better than conventional method, whereas
in synthetic case, it obtained results smoother enough to
optimize Dix results. In 2D synthetic case, regions with
high inclination made the results fail locally.

The insertion of information about the interfaces made
a discontinuous inversion possible, and consequently, a
method to estimate a stratigraphic velocity model in both
synthetic and real cases. Automatic detection of interfaces
by MUSIC measure failed on real case, but even though,
the procedure with chosen interfaces outputs a velocity
field that can be developed into a model proper to migration
of these real data from Tacutu Basin.

Further studies for this method are required. An
automatic regularization parameters estimation is needed,
and implementation in other seismic data, maybe marine
type, are encouraged.
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