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Abstract 

This paper shows a numerical study aiming at predicting 
seismic velocities and densities from nonlinear AVO 
inversion of prestack multicomponent shallow seismic 
data. In this approach we propose to use PP, PSv, SvP 
and SvSv amplitudes at pre- and post-critical angle. 
Amplitudes are evaluated by the exact Zoeppritz 
equations. In order to optimize the least-squares fit of 
observed and computed amplitudes we used parallel 
Multi-Start run for Controlled Random Search algorithm 
(CRS) and kernel density estimation. We present a new 
approach for multidimensional objective function analysis, 
with numerous implications for accuracy and efficiency of 
nonlinear inversion.  

Introduction 
 

Acquisition feasibility of multicomponent seismic 
data for shallow scale with a good signal-to-noise ratio 
has been demonstrated in recent studies, as an example 
we mention Dasi et al. (1999), Guy (2006), Pugin (2008) 
and Pugin et al. (2009). 

Knowledge of P-wave (α) and S-wave (β) velocities 
and density (ρ) of subsurface media allows direct access 
to information about mechanical and hydraulic behavior of 
rock and soil masses (compressibility, shear rigidity, 
porosity, permeability, Poisson's ratio etc.). Among the 
possible applications of this information in shallow 
investigation range, there are: quantitative detection of 
changes in properties of subsurface media during tunnel 
design (Kneib, G. et al., 2000); characterization of 
aquifers (Giustiniani et al., 1999); identification of lithology 
and porosity changes (Domenico, 1984); understanding 
effects produced by low-velocity layer in seismic imaging 
for hydrocarbon exploration (Guevara, 2001). 

Dependence of reflectivity with angle of incidence 
allows the estimation of elastic media parameters by AVO 
or AVA (reflected signal amplitude variation, respectively, 
with offset, or angle of incidence) inversions, which are 
frequently being used in petroleum industry. However, 
few studies are conducted in shallow range. 

Reflection coefficients of incident seismic waves on 
interface that separates two distinct media are provided 
by Zoeppritz equations, described in terms of six elastic 
parameters (P-wave (α) and S-wave (β) velocities and 
density (ρ), all above and below reflecting interface). Due 

to mathematical complexity and nonlinear character of 
these expressions it is habitual the use of linearization for 
seismic amplitudes, which are valid approximations only 
for angles of incidence below critical angle (Aki, & 
Richards, 1980; Castagna, 1993; de Nicolao, 1993), and 
in general, below 30 degrees. In most cases, these 
approximations are acceptable in the scale of 
hydrocarbon exploration. However, in near surface, where 
media have high contrasts of speed and due to 
interference of coherent noises hindering the observation 
of reflections at short offsets, it is common to record 
reflections with angles of incidence above the critical 
angle, in such a way making difficult the use of 
approximations for reflection coefficients. 

Several authors assert use Zoeppritz equations is 
too difficult for estimating media parameters based on 
inversion of amplitudes (Castagna, 1993; Rabben et al., 
2008). However, some ones agree there are several ways 
to stabilize the inverse problem. One possibility is to 
include converted waves (PSv and/or SvP) and SvSv 
reflected wave, besides usual P-wave reflectivity (de 
Haas & Berkhout, 1990; Demirbag and Çoruh, 1988). 
Another way is to use a wide offset range, before and 
after critical angle (Ostrander, 1984; de Haas & Berkhout, 
1990). 

One of the most controversial aspects, as regards 
elastic amplitude inversion, is the appropriate choice of 
model parameter vector. Debski and Tarantola (1995) 
support the best choices are: {density, P-wave 
impedance, and Poisson's ratio} or {density, P-wave 
impedance, and S-wave impedance}. Ursin and Tjaland 
(1996) affirm it is possible to estimate reasons with 
Zoeppritz equations: {α1/α2; α1/β1; α1/β2; ρ1/ρ2}. 
However, Larsen (1999) showed that in a numerical study 
by using reflected P-wave and PS converted amplitudes it 
is possible to estimate seismic velocities and density 
ratio: {α1; α2; β1; β2; ρ1/ρ2}.  

In this paper we present a strategy for nonlinear 
inversion of reflection coefficient of reflected PP, PSv, 
SvP and SvSv seismic waves, calculated from exact 
Zoeppritz equations, to obtain seismic velocities and 
densities: {α1, α2, β1, β2; ρ1; ρ2}. Evaluating feasibility of 
this parameterization for being the most convenient 
parameters for characterization of rock and soil masses 
was choice. 

It was suggested a strategy for reflection coefficient 
inversion, which ensure reliability of parameter estimates 
in the face of an inverse problem known as extremely ill-
posed. Methodology used to solve optimization problem 
allowed evaluating multidimensional characteristics of 
objective functions and search algorithm performance. 
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Figure 1: Synthetic seismograms of reflections and their 
curves of reflection coefficients, illustrating PP, PSv, SvP, 
SvSv seismic waves decomposed into vertical (z) and 
radial (x) plans. 

 
Layer 
number 

α  
(m/s) 

β  
(m/s) 

ρ  
(kg/m

3
) 

h  
(m) 

1 1500 452 1530 50 

2 3750 2165 2430 - 

Table 1. Parameters of numerical model cited in Pullan & 
Hunter (1985). 

 

Inversion Methodology 

 
Estimation of elastic subsurface parameters 

formulated by inversion of exact reflection coefficients of 
reflected PP, PSv, SvP and SvSv waves is a nonlinear 
problem, to find the parameter vector m = {α1, α2, β1, β2; 
ρ1; ρ2} so that an objective function f(m) is minimized. 
Inversion problem of reflection coefficient is known as 
extremely ill-posed. In this case, diverse models can 
equally well represent data, because there is not a single 
solution, and convergence of a global optimization 
algorithm to an extreme objective function point cannot 
guarantee the correct inverse problem solution. A careful 
analysis of the characteristics of nonlinear direct and 
inverse problems is indispensable for elaboration of an 
appropriate strategy to successfully achieve the 
estimation of parameters. 

 
Forward problem 
 

Mathematical formulation of forward problem solved 
within inversion process corresponded to exact 

calculation of reflection coefficient: RPP, RPSv, RSvP and 
RSvSv through Zoeppritz equations formulated according 
to Ikelle and Amundsen (2005). 

Figure 1 shows curves of reflection coefficients for a 
test model (Table 1), and their synthetic seismograms 
illustrating PP, PSv, SvP and SvSv waves decomposed in 
vertical (z) and radial (x) components  (2D example). We 
analyzed a wide window of source-receiver offsets: from 
1 m to 192 m, with 1 m of interval. To generating synthetic 
seismograms, reflection times were calculated by 
implemented ray method in package Seis88 (Cervený & 
Psencik, 1988). 

 
 

 
Figure 2: Sensitivity analysis: modulus of difference 
between values of reflection coefficients, calculated for all 
correct parameters, and with 10% perturbation in 
indicated parameter. 
 
Parameter sensitivity analysis 
 

The objective of sensitivity analysis is to study the 
sensitivity of reflection coefficients with parameter 
variation. Greater change in reflection coefficients when 
one media parameters is changed, better determination of 
relevant parameter, it means, lower the ambiguity in this 
parameter estimate will be. All reflection coefficients (RPP, 

RPSv, RSvP, and RSvSv) were calculated by introducing a 
10% perturbation in a parameter while leaving correct the 
other five parameters. Figure 2 shows, in a 4x6 matrix, 
the differences between the reflection coefficients 
calculated with the original and perturbed parameters. 
Each column represents a reflection coefficient and each 
line a parameter. 
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Briefly, the main conclusions of sensitivity study are: 
(1) densities are parameters that have a lower sensitivity 
in all coefficients, becoming more difficult (but not 
impossible) to be estimated; (2) a good option for 
estimating the 4 velocities is to use SvSv and SvP 
amplitudes, since reflections can be identified in seismic 
records in short offsets, for small angles of incidence (<30 
degrees), and (3) PP and PSv reflection coefficients 
present sensitive in a wide offset range. 
 
Objective function 
 

The least squares criterion was used to quantify the 
similarity between observed (A

obs
) and calculated (A

calk
) 

amplitudes, respectively by Zoeppritz equations for 
reflected PP, PSv, SvP, and SvSv waves. Thus, we 
defined four objective functions (equations 1 to 4), and in 
order to evaluate advantages in exploring potential 
redundancies or additional information simultaneous 
objective functions were also analyzed, it means, all 
possible combinations of equations 1-4. 
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Where j index refers to the number of seismic trace. 

The analysis of objective function characteristics is 
essential to validate the choice of optimization method 
suitable for solving the inverse problem. Observed 
topography in contour maps of objective function (Larsen, 
1999; Kurt, 2007) is the traditional way of evaluating 
optimization problem characteristics, such as linearity, 
local minima, ambiguities, and convergence, allowing 
defining the degree of complexity, and thus guiding 
search algorithm choice. This procedure works well if the 
inverse problem has two unknowns. However, for 
multidimensional problems, as investigated with six 
unknowns, the analysis provides erroneous information 
about function topography, and does not allow observing 
its global behavior, since function shares (cross sections) 
are observed, it means, there is only a variation of two 
parameters while other parameters are fixed at their 
correct values. 

In this study, we adopted a new methodology to 
evaluate topography of multidimensional objective 
function consisting of dispersion analysis of the set of 
points obtained by multiple runs of a stochastic 
optimization algorithm. Figure 3 shows an example of 
dispersion map obtained with Nelder-Mead SIMPLEX 

(Nelder and Mead, 1965) search algorithm, override to 
residual function map of fRpp function share (Eq. 1) for the 
pair of parameters: α1 and α2. The observed ambiguity in 
the residual function map of fRpp (contour plot on Figure 

3) is not the same as that revealed by dispersion map 

(dots on Figure 3). Analyzing the dispersion of 
optimization solutions is easy to differentiate the overall 
ambiguity of local minima, and color differentiation of 
different ranges of objective function values allows 
visualizing function topography. 

 
 

Figure 3: Dispersion map of points obtained by multiple 
realizations of optimization algorithm override to contour 
map of fRpp share for the pair of parameters (α1 - α2). The 

color scale marks the range of function values found by 
repeating optimization procedure. 
 
Optimization  

The global minimum objective function search was 
performed with a Multi-Start procedure implementation by 
using the stochastic global CRS (Controlled Random 
Search) optimization algorithm (Price, 1979; Price 1983; 
Eligius et al., 2001) connected with Nelder-Mead simplex 
algorithm to improve local search ability. When executed 
more than once, stochastic algorithms rarely converge to 
the same point. Many times, the search procedure 
produces a set of solutions that form a distribution. When 
this distribution is normal, arithmetic mean value is equal 
to maximum likelihood distribution, such as reflection 
coefficient inversion using the least squares criterion, it is 
acceptable to use the mean or median for final parameter 
estimation. Usually, median is considered more robust 
(Isaaks, 1989). 
Dispersion maps proposed for multidimensional analysis 
of objective function also proved to be very useful to 
evaluate various aspects of optimization procedure, 
allowing validating and/or refining the defined search 
strategy. Figure 4 shows one examples of this type of 
analysis applied to evaluate performance of search 
procedure on two different objective functions. 
 
Inversion results 
 

Without noise, it was possible to estimate all 
proposed parameters using each reflection coefficients  
(PP, PSv, SvP and SvSv) individually. In general, 
densities were worse determined, consistent with 
conclusions obtained from sensitivity analysis. Error in 
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estimate was less than 0.3% for all parameters (Figure 5) 
using any objective functions (single or joint). 

Adding white Gaussian noise to synthetic data 
(Figure 6) the error increases. In this case, the use of joint 
objective functions is more relevant. The best joint 

objective function was fRpp,Rpsv,Rsvp,Rsvsv, because all 
parameters had an error less than 0.5%. The best 

individual objective function was fRpp with error less then  
2% (Figure 7). 

 

  
 

Figure 6: P-wave reflection coefficient curve with Additive 
White Gaussian Noise. 
 
Discussions and Conclusions 
 

Results obtained from tested model indicate it is 
possible to use the exact Zoeppritz equations in order to 
individually determine the six model parameters. It was 
achieved through implementation of a Multi-Start 
procedure for a stochastic algorithm for global 
optimization followed by a statistical analysis of 
distributions around global minimum. Idealized 
optimization strategy does not require a priori information 
about model parameters. 

Another important advantage of Multi-Start 
procedure is the possibility and easiness in using parallel 
computing. 

Dispersion maps were very useful to analyze 
topography of multidimensional objective functions, and 
optimization results. This procedure may have several 
applications but mainly it is an excellent tool for analyzing 
nonlinear inversion problems in more than two 
dimensions dealing with multimodal objective functions, 
allowing that global optimization strategy is more safely 
designed. 

Taking into consideration an ideal noiseless 
situation, the use of any reflection coefficient is adequate 
to estimate parameters. In noise presence, it is desirable 
to use joint objective functions. 
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Figure 4: Examples of dispersion maps for objective function   fRpp, (left) versus joint objective function fRpp,Rpsv,Rsvp,Rsvsv 

(right).
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Figure 5:  Relative error for each parameter when performing individual and joint inversions using data without 
noise.
 

 

Figure 7:  Relative error for each parameter when performing individual and joint inversions using data with 
noise.

 

 


