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Abstract

We present a strategy to time-to-depth conversion
and velocity estimation based only on the image-
wavefront propagation. It has two main features: (1) it
computes the velocity field and the traveltime directly,
avoiding the ray-tracing step; and (2) it requires only
the knowledge of the image-wavefront at the previous
time step. As a consequence, our method tends to be
faster than usual techniques and does not carry the
constraints and limitations inherent to common ray-
tracing strategies. We have tested the feasibility of the
method on the original Marmousi velocity model and
two smoothed versions of it. Moreover, we migrated
the Marmousi data set using the estimated depth
velocity models. Our results indicate that the present
strategy can be used to construct starting models
for velocity-model building in depth migration and/or
tomographic methods.

Introduction

The need to investigate regions with complex geology has
encouraged the development of imaging methods that act
in the depth domain. Important examples are prestack
depth migration (PSDM) and full-waveform tomography
(FWT) techniques. However, the application of these
methods faces at least two problems: they require (1) an
accurate velocity macromodel and (2) large computation
power.

In contrast, time migration has proved to be a very fast and
robust process, making it routinely employed for seismic
imaging. Moreover, time velocity-model building is a very
well understood process, leading to high-quality migration
velocity models in time. Therefore, it is highly desirable to
construct starting models for depth techniques from these
time-domain velocity models by means of time-to-depth
conversion.

While vertical conversion from time to depth has been
routinely employed for a long time, Hubral (1977) was the
first to recognize the need of taking lateral displacements
into account. He demonstrated that time- and depth-
domain coordinates are interconnected by the so-called
image ray. More recently, Cameron et al. (2007, 2008)
derived the theoretical relation between the time-migration
velocity and seismic velocity using image-ray theory and

paraxial ray-tracing theory (Popov et al., 1978; Červeny,
2001; Popov, 2002). Their algorithm consists of image-ray
tracing to convert time Dix velocities into ray coordinates
velocities and then time-to-depth convert them based on
Dijkstra-like fast marching methods (Sethian, 1999a,b).
Iversen and Tygel (2008) proposed a similar but more
efficient technique that even in 3D requires only a
single-azimuth time-migration velocity field as an input to
construct the depth velocity field.

Despite being a very attractive method, time-to-depth
conversion is an ill-posed problem (Cameron et al., 2007).
It aggregates the limitations of all involved steps, that
is, the constraints involved in time migration, ray-tracing,
and Dix-based velocity conversion (Iversen and Tygel,
2008). Thus, regularization is essential for adequate
time-to-depth conversion. Such a regularization can be
added in two phases of the process: (1) during the
estimation of the Dix velocity field from an estimated
time-migration velocity field, and (2) during the image-
ray tracing. Valente et al. (2009) compared the three
conversion techniques of Cameron et al. (2007), Cameron
et al. (2008), and Iversen and Tygel (2008). They
demonstrated that the different procedures react differently
to different kinds of regularization. However, although
the image-ray trajectories and the resulting depth velocity
models depended on the regularization employed, the
corresponding final depth images were very similar.

The objective of the present work is to present an
alternative algorithm for the time-to-depth conversion,
which does not require image-ray tracing. Instead, it
simulates the propagation of an image-wavefront in the
subsurface. Our approach has the advantage of directly
computing the velocity field and the traveltime. Here we test
the approach on the Marmousi data set. We use Fourier
Finite-difference (FFD) migration based on complex Padé
approximations (Amazonas et al., 2007) to evaluate the
quality of the depth-migrated images.

Time-to-depth conversion algorithms

Two-dimensional inverse problem

Consider an image point at coordinates (γ,τ) in a time
migrated section, with γmin ≤ γ ≤ γmax and 0 ≤ τ ≥ τmax.
This image point can be associated with an image-ray that
has reached the acquisition surface at the position γ in
time τ. The problem of time-to-depth conversion consists
of tracing this image-ray back into the medium together
with a family of rays, associated with a plane wave that
tangent to the acquisition surface at γ, until the time τ is
consumed and the ray has reached its position x = (x,z) in
the subsurface. In other words, we want to simultaneously
solve the set of equations for kinematic and dynamic ray
tracing with plane-wave initial conditions. This set can be
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represented in two dimensions as

dx
dτ

= v2(x)p ,
dp
dτ

=− 1
v(x)

∇xv(x) , (1)

∂Q
∂τ

= v2(x)P ,
∂P
∂τ

=− 1
v(x)

∂ 2v
∂η2 Q ,

where η denotes the coordinate direction perpendicular to
the ray. The initial conditions for image-ray tracing read

x(τ = 0) = (γ,0) , p(τ = 0) =
ẑ

vDix(x(τ = 0))
, (2)

Q(τ = 0) = 1 , P(τ = 0) = 0 ,

where ẑ is the unit vector in the vertical direction.

Inversion algorithm

As an alternative to simplify the computation of the
derivatives along the image-rays, Cameron et al. (2007)
proposed an image-ray tracing algorithm which fits the
image-wavefront by polynomial curves. Based on
this algorithm, Valente (2007) proposed an additional
regularization to the fitting, which increases the choice of
the degree of the polynomial.

Only a little later, Cameron et al. (2008) presented a new
ray tracing algorithm, in which the last two equations of
system (2) are integrated based on the Lax-Friedrichs
method (Lax, 1954). In this method, no additional
regularization is needed. The regularization is intrinsically
performed by the P-averages that are computed along
the wavefront of the image-wave, in this way avoiding
instabilities in the FD scheme by damping high frequencies.

After the application of the any of the cited inversion
algorithms, the results are the image-rays and/or image-
wavefronts and, above all, the velocity field v(x(γ,τ)) in
depth along the image rays trajectories. Therefore, this
velocity field is given on a non-regular grid. One way to
transfer this field onto a regular grid is direct interpolation
at the regular grid points and extrapolation in the border
regions. Cameron et al. (2007) describe a very efficient
algorithm to solve this problem, using the eikonal equation
based on the fast-marching method (Sethian, 1999a,b).
This provides not only the depth velocity field v(x), but also
τ(x) and γ(x) on a regular grid. The latter two fields can be
used in the conversion of time-migrated images to depth-
migrated images.

Cameron et al. (2007) also described another way to
approach the problem by means of the level-set method
(Sethian, 1999b).This method boils down to propagate
the image-wavefront tangent to the acquisition surface
in time τ = 0 back into the subsurface. To do so, the
image-wavefront is represented as a zero level of a two-
dimensional function φ(x). Two two-dimensional functions
p(x) and q(x) are also incorporated along the image-
wavefront, defined in such a way that, for each time
interval ∆τ they are equivalent to the values of P and Q,
respectively. These functions satisfy the equation system

∂φ

∂τ
= v(x)‖∇φ‖ , ∂q(x)

∂τ
= v2(x)p(x) ,

∂ p(x)
∂τ

=
1

v(x)
∂ 2v
∂η2 q(x) ,

where the second derivative of v in the direction

perpendicular to the ray can be represented as

∂ 2v
∂η2 =

∥∥∥∥ 1
∇φ

∂φ

∂x

∥∥∥∥2
∂ 2v

∂x2

−2
(

1
∇φ

∂φ

∂x
· 1

∇φ

∂φ

∂ z

)
∂ 2v

∂x∂ z
+

∥∥∥∥ 1
∇φ

∂φ

∂ z

∥∥∥∥2
∂ 2v

∂ z2 . (3)

From equation (3), we find the initial conditions for the
auxiliary functions p and q as q(x(τ = 0)) = 1 and p(x(τ =
0)) = 0. This scheme inherently uses the fast-marching
conversion algorithm to calculate the velocity field v(x).

Based on the algorithm of the level-set method, we
propose an alternative strategy to perform the time-to-
depth conversion. This new strategy has the advantage of
directly obtaining the velocity field v(x) and the traveltime
τ(x), avoiding to calculate the auxiliary functions p(x) and
q(x). By means of a modified fast-marching conversion
algorithm, we can directly determine the matrix γ(x)
of image-ray emergence points from the already known
values of v(x) and τ(x). For details, see Valente (2013).

The wavefront-construction algorithm proposed in this work
is slightly different from other algorithms discussed in
previous works. For example, Vinje et al. (1993) construct
the wavefront checking neighbouring rays for significant
deviation or crossing, adding new rays in the first case
and removing one of the crossing rays in the second one.
The new rays start at the midpoint between two known
rays with ray quantities obtained by linear interpolation.
Furthermore, the authors also use linear interpolation to
output the involved ray quantities on a regular grid. In a
different strategy, Silva et al. (2009) use a finite-difference
scheme to evolve the wavefront along the image ray. To
determine the ray quantities at the new wavefront, this
scheme makes use of the information at two points on the
previous wavefront.

In this work, we proceed in yet another way. The
principal advantage of our proposed algorithm is that the
ray quantities are immediately interpolated at the horizontal
coordinates of the given grid, determining the vertical
coordinate of the wavefront accordingly. In this way, we
avoid the need to add or remove points on the wavefront.
Moreover, this procedure requires the final interpolation of
the output quantities in the vertical direction only. For the
propagation, it needs only the knowledge of the image-
wavefront at the previous time step.

The first step of our algorithm is to propagate the image-
wavefront φ(x) in the direction of its gradient ∇φ , integrating
the system

xn+1/2
j = xn

j + vn
j (n · x̂)

n
j ∆τ , (4)

zn+1/2
j = zn

j + vn
j (n · ẑ)

n
j ∆τ

to obtain the coordinates (red points in Figure 1) of the
image rays on new wavefront φ n+1(x(γ)) from the those of
the previous one, φ n(x(γ)), where j indicates the number
of the image ray and n indicates the time step, as before.
The direction n = ∇φ/‖∇φ‖ of the gradient at each point
along the wavefront is obtained by rotating by −90◦ the unit
tangent vector to the wavefront, approximated by

t̂ =
(x j+1− x j,z j+1− z j)√

(x j+1− x j)2 +(z j+1− z j)2
. (5)
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Figure 1: Sketch of the image-wavefront propagation
algorithm. The ray quantities are not computed where
the image-ray paths intersect the desired wavefront (red
dots), but rather along vertical lines coincident with the
lateral positions of the grid (blue dots). The next step starts
from these new base points using tangent vector t̂ and the
traveltime gradient ∇φ .

From the set of points xn+1/2, we can find the points on
the wavefront xn+1 that intersect the vertical grid lines (blue
points in Figure 1). They are given by xn+1 = γ and zn+1 =
z(xn+1,τn+1), where the vertical coordinate is determined
by means of linear interpolation. In other words, we
redefine the calculation points so that they fall exactly on
the lateral positions where the wavefront intersects the
grid (see Figure 1). In this way, the sampling along the
wavefront remains always regular, avoiding the need to add
or remove rays. At the next time step, the algorithm starts
at the image-wavefront at these new coordinates (Figure 1)
and the velocity field is determined from

v(x)≡ vDix(γ = x,τ(x)) . (6)

We refer to this wavefront-construction strategy as
wavefront propagation, because it does not follow any
single image-rays through the model.

Numerical Examples

Since our wavefront-propagation strategy does not require
smooth input velocities, we could test it on the Marmousi
velocity model (Versteeg, 1994), representing a more
realistic geological setting. For a comparison to the
conventional conversion procedures, we applied them to
two differently smoothed versions. In all cases, we
compare the determined depth velocity model to those
estimated by other time-to-depth conversion methods.
Finally, we complement our numerical evaluation with a
comparison of the depth-migrated sections obtained using
the complex Padé Fourier finite-difference technique of
Amazonas et al. (2007).

Original Marmousi model without smoothing

Paraxial ray theory needs a smooth velocity field without
strong velocity variations. Otherwise, the ray field becomes
irregular and cannot be trusted. As a consequence the
time-to-depth conversion methods based on paraxial ray
tracing can be applied only if the input model is smooth.
In contrast, our new wavefront-propagation strategy can be
applied to the original Marmousi model without smoothing.
The reason is it is an adaptation of the level-set method
(Cameron et al., 2007, 2008) that does not rely on the
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Figure 2: Test on the stratigraphic Marmousi velocity model
without smoothing. (a) True Marmousi depth model. (b)
Time interval velocity. (c) Time-to-depth conversion by
image-wavefront propagation. (d) Relative model error. (e)
Wavefronts in converted (blue lines) and true (black lines)
models. Numbers indicate traveltimes in seconds.

ray-tracing step. Therefore, we are able to evaluate its
behaviour in a very complex situation. This example
highlights an important feature of our method: It does not
require any previous regularization. Thus, it can be applied
directly in high-frequency models and/or noise corrupted
models provided, for example, by automatic methods of
velocity-model building.

Figure 2(a) shows the original Marmousi velocity model in
depth without smoothing. As before, we compute the Dix
velocity (Figure 2(b)) and use it as the input for the time-
to-depth conversion by image-wavefront propagation. The
resulting converted depth model is depicted in Figure 2(c).

We observe that time-to-depth conversion by image-
wavefront propagation recovers a high-quality version of
the original model in the central part down to a depth
of about 1.5 km and in the sedimentary parts on the
sides of the model down to the salt intrusions. Even the
intrusions themselves and sediments below them are quite
reasonably recovered. The high velocity of these salts
do not seem to have a strong influence on the sediments
below them.

The faults present in the central part of the Marmousi
model bring out another interesting feature. Apparently,
our technique does not suffer with the strong dip variation
present in that area. However, below the strong lateral
velocity variations in the central part of the model,
where the time velocity model shows some high-frequency
irregularities, these are amplified in the converted depth
model.

The quality of the converted model is confirmed in
Figure 2(d), which shows the relative error between the
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extracted velocity model (Figure 2(c)) and the true one
(Figure 2(a)). The error accumulates in the regions of
strong lateral velocity variations, where the image-ray
principle is known to become problematic. Particularly at
misplaced velocity contrasts, the error can locally reach
almost 100%.

Finally, Figure 2(e) presents the superposition of the
wavefronts. This figure confirms the previous observations,
showing a better fit of the wavefronts in the upper and
lateral parts of the model. Moreover, we see in Figure 2(e)
that even in the central parts of the model, the long
wavelengths of the wavefronts in the extracted model
adjust to those of the wavefronts in the true model.

Smoothed versions of the Marmousi model

To allow for a comparison between the ray-tracing-
based time-to-depth conversion techniques of Cameron
et al. (2007, 2008) with our image-wavefront propagation,
we need a smooth input velocity model. For this
reason, we smoothed the original Marmousi velocity model
(Figure 2(a)) by a single pass of a moving-average filter. In
the first test, we used a 600 m×600 m (50 by 50 points)
window (see Figure 3(a)).

Figures 3(c) and 3(d) show the depth velocity models
obtained, respectively, by image-ray and wavefront-
propagation conversion of the Dix velocities in Figure 3(b),
and Figures 3(e) and 3(f) show their respective errors. As a
first observation, we notice that both models resemble the
original model quite closely. The errors of the conversion
of the smooth model are much smaller than the ones from
the conversion of the hard model (compare Figure 3(f) to
Figure 2(d)). We conclude that, though not a requirement,
conversion of a smooth model is advantageous for the
wavefront-propagation method. Moreover, image-ray
conversion produces, below a certain depth, significantly
larger errors (up to 20%) than wavefront-propagation
conversion (up to 7%), even in the sedimentary part of the
model. In the image-ray converted model (Figure 3(c)),
there are two near-vertical lines at distances of about
5 km and 7 km, where the converted velocities change
rather abrupt. These are due to crossing image rays.
This effect is not observable in the wavefront-propagation
converted model (Figure 3(d)). The better quality of the
latter model is also reflected in the better match of the
wavefronts in Figure 3(h) than in the corresponding image-
ray Figure 3(g).

The second test, where we used a 1200 m×1200 m
(100 by 100 points) window for the moving-average filter
(see Figure 4(a)), confirms these findings. For this even
smoother model, the converted models (Figures 4(c) and
4(d)) are even closer to the true model and the errors
of both methods (Figures 4(e) and 4(f)) are smaller than
in the previous case (up to 9% for image-ray conversion,
1.2% for wavefront-propagation conversion). The result
of wavefront-propagation conversion (Figure 4(d)) is still
superior to the one of image-ray conversion (Figure 4(c)),
which is clearly visible in the error plots (Figures 4(e)
and 4(f)) and also reflected in the better match of the
wavefronts (Figures 4(g) and 4(h)). Though weaker, the
abrupt velocity changes due to image-ray crossing are still
visible in Figure 4(c).
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Figure 3: Test on a smoothed version of the Marmousi
model of Figure 2(a). One pass of a moving average with
a 600 m×600 m (50 by 50 points) window. (a) True depth
model. (b) Time interval velocity. Time-to-depth conversion
by (c) image ray-tracing and and (d) image-wavefront
propagation. (e) Relative error of (c). (f) Relative error of
(d). (g) Wavefronts (blue lines) in (c) and (h) wavefronts
(blue lines) in (d), as compared to the wavefronts in the
true model (black lines). Numbers indicate traveltimes in
seconds.

Migration results

We have shown that time-to-depth converted velocity
models depend on the technique employed for the
conversion. Moreover, it is known that depth migration is
more susceptible to velocity variations than time migration.
Thus, an important means to evaluate the achieved depth
velocity models is by means of depth migrations. We used
a two-dimensional Fourier finite-difference (FFD) migration
with the complex Padé approximation as discussed in
Amazonas et al. (2007). One of the reasons that led us
to choose this method is that it was proven to be fast and
robust. Another important point is that Amazonas et al.
(2007) performed several depth migrations with different
migration methods for the Marmousi data set and velocity
model we use here. The use of their migration method
allows us to compare our results to their migrated images,
in this way increasing our information database.

For better comparison, all models presented in the last
section were used to depth migrate the Marmousi data
set with the same setup of Amazonas et al. (2007). We
used a branch-cut rotation angle of α = 45◦, a depth
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Figure 4: Test on a smoothed version of the Marmousi
model of Figure 2(a). One pass of a moving average
with a 1200 m×1200 m (100 by 100 points) window. (a)
True depth model. (b) Time interval velocity. Time-to-
depth conversion by (c) image ray-tracing and and (d)
image-wavefront propagation. (e) Relative error of (c).
(f) Relative error of (d). (g) Wavefronts (blue lines) in
(c) and (h) wavefronts (blue lines) in (d), as compared to
the wavefronts in the true model (black lines). Numbers
indicate traveltimes in seconds.

extrapolation step size of 6 m, and the source wavefield
was computed using a Ricker wavelet with a 25-Hz peak
frequency. Figures 5, 6 and 7 show the migrated images
obtained with the models presented in Figures 2, 3 and 4
respectively.

Figure 5 compares the migration of the Marmousi dataset
with the true Marmousi model (Figure 5(a)) to the one using
the wavefront-propagation converted unsmoothed model
(Figure 5(b)). While we recognize some deterioration of the
image in Figure 5(b), particular in the lowermost part, the
overall result is quite acceptable, indicating that the time-
to-depth conversion has worked as expected.

The migrated image using the true smoothed model of the
first example is already of a poorer quality (Figure 6(a))
than both images of Figure 5. The images obtained from
the converted models (Figures 6(b) and 6(c)) are quite
similar to Figure 6(a). As expected from the velocity
models, the image obtained with the wavefront-propagation
model (Figure 6(c)) is a little closer to the one from the true
smooth model, with the deviations in the image-ray image
(Figure 6(b)) being located at and below the regions where
the model errors are the largest (see Figure 3(e)).
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Figure 5: Prestack depth migrated sections of Marmousi
data set using the velocity models of Figure 2(a) and (c)
respectively.

The images in Figure 7 are even more similar to
each other. Closer inspection reveals that again, the
strongest deviations from the migration with the true model
(Figure 7(a)) occur in the image-ray image (Figure 7(b))
at those parts where the model errors are the largest,
while the wavefront-propagation image (Figure 7(c)) is now
virtually indistinguishable from Figure 7(a).

Conclusion

We have presented a new strategy to perform wavefront-
construction in image-ray-based time-to-depth conversion
of velocity models. We make use of geometric
considerations on a rectangular grid to move the base
points to vertical lines instead of following individual image
rays. In this way, we are able to reduce the computation
time without any loss in accuracy. Our method allows to
calculate the velocity and traveltime fields directly, avoiding
the computation of certain parameters common in the ray-
tracing methods. To proceed, the procedure requires only
the knowledge of the image-wavefront of the previous time
step.
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