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Abstract

This paper presents a new iterative method for solving
axi-symmetric integral equations. To test the accuracy
and efficiency of the method, a relatively simple one-
dimensional layered medium geometry is assumed.
In this case, the problem reduces to sequences
of one-dimensional convolutions using fast Fourier
transforms along the axial direction z. The equation is
renormalized such that the Neumann series iterations
converge rapidly, even in the limit of high contrasts.
The transforms are designed to mimic their continuous
counterparts on semi-infinite intervals. Validation
compares numerical and well-known analytical results
for layered earth models.

Introduction

Integral equation solutions using finite-element or moment
methods result in full matrices usually limiting such
methods to cases where relative anomaly volumes are
small. For linearized solutions, the convolutional form of the
integral equation is often exploited by Fourier transforming
the equation into the spatial frequency domain to perform
the convolution between the Green’s function and the
volume current using FFT’s (fast Fourier transforms). The
integral equation naturally results in order 1 Fourier-Bessel
transforms. These transforms however, are not directly
amenable to Cartesian coordinate FFT computation.

A form of the integral equation this method is designed
to solve is given by Howard (2014). This type of
equation is used to model induction logging tool response
in borehole geophysical applications (Chew (1991)). In
order to realize the time savings fast Fourier transform
operation count proportional to N log2 N, it is necessary to
keep the computation in memory. For three-dimensional
problems, work stations can provide this type of CPU
memory resource (perhaps 128 to 256 GB). In the case
of axial-symmetry, the integral equation for the electric field
component eφ (x) is pseudo-scalar and is shown to take the
form

eφ (x) = eφ ,0(x)+
1

2π

∫
g1(x,x′) j(x′)d3x′ , (1)

where the volume current j(x) depends on the unknown
electric field eφ (x) and the formation profile function p(x) ,
i.e.,

j(x) = p(x)eφ (x) ,
p(x) = k2(x)− k2

b ,
(2)

and the integration is over all space. The azimuthally
symmetric Green’s function in equation (2) for a loop
source transmitter is given by

g1(x,x′) =
∫ 2π

0
cos(φ −φ

′)
eikbR

4πR
dφ
′ , (3)

where R = |x − x′| and kb is the intrinsic quasi-static
electromagnetic background wavenumber in units of [m−1].
The known background electric field eφ ,0(x) is the solution
to the homogeneous space problem with wavenumber kb =
(iωµ0σb)

1/2 with Im(kb)≥ 0 for a time factor of e−iωt . Here
σb [S/m] is the earth model background conductivity, µ0 =
4π×10−7 [H/m] is the magnetic permeability of free space,
ω = 2π f , and f is the transmitter frequency in Hz. For this
analysis we use the Green’s function g1(x,x′) in the formof
Howard (2015), p. 11

g1(x,x′) =
∫

∞

−∞

dKzeiKz(z−z′)
∫

∞

0
dKρ Kρ

J1(Kρ ρ)J1(Kρ ρ ′)

K2− k2
b

.

(4)

Note that the integral equation defined by equation (1)
is a convolution of the Green’s function and the volume
current j(x′). Substitution of representation (4) into integral
equation (1) thus gives

E(Kρ ,Kz) = E0(Kρ ,Kz)+G(K)J(Kρ ,Kz) , (5)

where

G(K) = 1/(K2− k2
b) , (6)

and K2 = K2
ρ +K2

z . The function J(Kρ ,Kz) is the transform
of the volume current defined as

J(Kρ ,Kz) =
∫

∞

−∞

e−iKzz′dz′
∫

∞

0
ρJ1(Kρ ρ

′) j(ρ ′,z′)dρ
′ , (7)

with analogous transform definitions for the background
and total electric fields. In the one-dimensional layered
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medium case where the profile varies only in the z direction
(p(x) = p(z)) results in the simplification

J(Kρ ,Kz) = P(Kz)∗E(Kρ ,Kz) . (8)

An iterative solution to the integral equation (5) can be
written in the form

E(n+1)(Kρ ,Kz) = E0(Kρ ,Kz)+G(K)
(

P(Kz)∗E(n)(Kρ ,Kz)
)
,

(9)

for n = 0,1,2, · · · .The iteration is initialized with the
background field, i.e. E(0)(Kρ ,Kz) = E0(Kρ ,Kz) ,

where

E(n)(Kρ ,Kz) =
∫

∞

−∞
e−iKzzdz

∫
∞

0 ρJ1(Kρ ρ)e(n)
φ

(ρ,z)dρ ,

n = 0,1, · · · .
(10)

It is interesting and gratifying to note that the form of
integral equation given by (5) or (9) is the same as that
for the scalar field 2D equation given by equations (7.11),
(7.12), and (7.13) in Howard (2015). The first iteration
begins with the background field, i.e., E(0)(Kρ ,Kz) =
E0(Kρ ,Kz) on the right-hand-side of equation (9).

To consider the numerical convergence of the iterative
solution to integral equation (1), rewrite it in terms of the
linear integral operator L, i.e.,

eφ (x) = eφ ,0(x)+Leφ (x) . (11)

Formally, this iterative solution, if it exists, takes the form

eφ (x) = eφ ,0(x)+Leφ ,0(x)+L2 eφ ,0(x)+ · · · ,

=
[
I−L

]−1
eφ ,0(x) .

(12)

A necessary condition for the convergence of the Neumann
series solution given by equation (12) is that the norm of the
operator be less than one, i.e.,

|L|< 1 . (13)

The convergence depends on the profile function p(x) and
the singularity of the Green’s function g1(x,x′). Habashy
(1993), by modifying the equation, softens the singularity
in the Green’s function, resulting in a simple method
to enhance convergence. Their idea is to modify the
defining equation (1) by adding and subtracting the term
1

2π
eφ (x)

∫
g1(x,x′)p(x′)d3x′ and thus obtain a form of the

integral equation more amenable to Neumann iteration,
e.g.,

eφ (x) = n(x)eφ ,0(x)+
n(x)
2π

∫
g1(x,x′) p(x′)

(
eφ (x)− eφ (x′)

)
d3x′ ,

(14)

where the re-normalization function is defined as

n(x) = 1/
(

1−m(x)
)
, (15)

and where the associated normalization function is

m(x) =
1

2π

∫
g1(x,x′) p(x)d3x′ . (16)

Notice there are only three types of numerical operations
in this type of iterative solution of the integral equation :
addition, element-by-element multiplication (.∗ in Matlab
(2015) syntax) and a FFT based convolution. So for this
type of solution to be useful, it is important that the most
time consuming operation, namely convolution, be efficient.

In this exploratory analysis, let us consider a relatively
simple case when the profile depends only on z. In this
case, it is possible and easier to solve a sequence of
independent, small, one-dimensional problems, rather than
a much larger but equivalent two-dimensional one by using
a hybrid method. Thus, take the transform of integral
equation (5) with respect to z to get

E(Kρ ,z) = E0(Kρ ,z)+G(Kρ ,z)∗
(

p(z)E(Kρ ,z)
)
, (17)

where from equation (6)

G(Kρ ,z) =
e−γ|z|

2γ
, (18)

for

γ = (K2
ρ − k2

b)
1/2, Rl(γ)≥ 0 . (19)

For an NT turn loop source of radius aT at axial position zT ,
with NT turns and current I0, the background electric field
eφ ,0(x) is

eφ ,0(x) = iωµ0NT I0aT g1(x,xT ) . (20)

Using representation (4) leads to the hybrid form of the
background field

E0(Kρ ,z) =
iωµ0NT I0aT

2
J1(Kρ aT )

e−γ|z−zT |

γ
, (21)

where γ is defined by equation (19). The renormalized
iterative form of integral equation (17) analogous to
equation (14) is

E(n+1)(Kρ ,z) = N(Kρ ,z)E0(Kρ ,z)+N(Kρ ,z)(
G(Kρ ,z)∗

(
p(z)E(n)(Kρ ,z)

)
−E(n)(Kρ ,z)M(Kρ ,z)

)
,

(22)

where
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Et = E0;
T1 = Nkrz.*E0;
fm2D = ones(ninpts,1)*prf1D;
G1 = exp(-gamma*abs(zz))./(2*gamma*unitz);
G1s = fftshift(G1,2);
Ets = E0;
tinyn = 1.0e-5*nzpts;
nit = 1; % iteration number

while max(rsid(:)) > tinyn && nit < nitmax
T2 = ifft(G1s.*fft(fm2D.*Ets,[],2),[],2);
Et = T1 + Nkrz.*(T2 - Mkrz.*Ets);
if nit == 1; Etb = Et; end % Born approximation
rsid(:,nit)= sum(abs((1-Et./Ets).ˆ2),2);
Ets = Et;
nit = nit + 1;

end; % while max(rsid(:)) > tinyn && nit < nitmax
rsid = rsid/nzpts;

Table 1: Matlab code segment showing Neumann iteration
and stopping criterion.

N(Kρ ,z) = 1/(1−M(Kρ ,z)) ,
M(Kρ ,z) = G(Kρ ,z)∗ p(z) . (23)

The stopping criteria for the iterative method implied in
equation (22) is that either the residual R , defined as

R =
Nz

∑
nz=1
|1−E(n+1)(Kρ ,nz)/E(n)(Kρ ,nz)|2/Nz , (24)

is less than a preset tolerance or the number of iterations
n exceeds a preset upper bound Nmax. Beginning with the
known starting point E(0)(Kρ ,z) = E0(Kρ ,z), the idea is to
iteratively solve the one-dimensional integral equation (22)
for E(K`,z) for all radial wavenumber values Nr in parallel
for all quadrature abscissa K`, ` = 1,2, · · · ,Nr and then,
compute the solution to the integral equation by numerical
quadrature of the Fourier Bessel- transform, i.e.,

eφ (ρ,z) =
Nr

∑
`=1

J1(K`ρ)K`E(K`,z)w` , (25)

where w` is the quadrature weight coefficient associated
with abscissa K`.

Unlike the case of linearized response function methods,
as given for example in Howard (1986), this integral
equation iterative method solves for the electromagnetic
field at all points in the formation for a fixed transmitter
location. To compute an induction log response,
therefore, requires a solution for each transmitter location
used to generate the log data. This additional
computational overhead increases the importance of
efficient computational methods.

To illustrate the simplicity and succinctness of the integral
equation FFT iterative method, a short segment of
Matlab code based upon the Neumann iteration scheme
developed here, including a stopping criterion based upon
small residual R as defined by equation (24) and iteration
count is included in table 1.

Layered medium profile function p(z)

A staircase one-dimensional layered medium profile
function p(z) = k2(z)− k2

b for M regions with ordered bed-
boundaries zm, such that zm > zn when m > n and for M > 2
can be written in the form

p(z)= k2
1 u(z1− z)+

M−1

∑
m=2

rect
( z−d(+)

m

2d(−)
m

)
k2

m +u(z− zM)k2
M− k2

b ,

(26)

where the step function u(z) is defined as

u(z) =
{

1, z≥ 0,
0, otherwise, (27)

and similarly the rectangle function rect(z) is defined as

rect(z) =
{

1, |z|< 1/2,
0, otherwise. (28)

The profile distances d(±)
m ,m = 2,3, · · · ,M are given by

d(−)
m =

zm− zm−1

2
,

d(+)
m =

zm + zm−1

2
.

(29)

Note that p(z) has the piece-wise constant property

p(z) = k2
m− k2

b , when zm−1 ≤ z≤ zm . (30)

Thus computing the associated profile spectrum P(Kz) for
profile given by equation (26) determines

P(Kz) = 2π

[
((k2

1 + k2
M)/2− k2

b)δ (Kz)

+2
M−1

∑
m=2

d(−)
m e−iKzd

(+)
m sinc(Kz d(−)

m )
]
,

(31)

where

sincz =
sinz

z
. (32)

Thus a reasonable choice for the background intrinsic
wavenumber kb is the shoulder bed average

k2
b =

k2
1 + k2

M
2

. (33)

Actually, equation (31) applies to an infinite interval. For
discrete transforms over a finite interval Z , a bed-weighted
average over the discrete interval Z = frNzδs is used
where the skin depth δs = 1/real(kb) and fr is an empirical
unitless constant chosen to be fr = 0.012. The bed
weighted averaging method results in a quadratic equation
for kb.

Fourteenth International Congress of The Brazilian Geophysical Society



A FOURIER ITERATIVE METHOD FOR SOLVING AXI-SYMMETRIC INTEGRAL EQUATIONS 4

Normalization function m(x)

For axi-symmetric 1D layered media, the normalization
function M(Kρ ,z) is defined by equation (22) and is suitable
for numerical evaluation.

M(Kρ ,z) = G(Kρ ,z)∗ p(z) ,

=
∫

∞

−∞

p(z′)
e−γ|z−z′|

2γ
dz′ ,

(34)

for

γ = (K2
ρ − k2

b)
1/2, Rl(γ)≥ 0 . (35)

Use of the normalization function in the form M(Kρ ,z) given
by equation (34) is preferable for this problem because it is
associated with a set of smaller one-dimensional problems.

Numerical examples

Figure 1 is the large dynamic-range one-dimensional 28
layer Oklahoma input formation conductivity profile σ(z)
[S/m] used in the simulations to follow. Table 2 defines
input parameters for the simulation. Figure 2 compares
the computation of equation (34) as computed by 256
point Gauss-Legendre quadrature with an FFT numerical
convolution with respect to z. Figure 4 shows the
convergence of the iterative method as a function of Kρ

after 1,2,5 and 9 iterations. In this example, the background
conductivity σb = 0.7 ∗ σb0 (see figure 5). Figure 5 is
the mean with respect to Kρ of |N(Kρ ,z)| showing the
importance of choosing kb correctly because the series
does not converge where |N(Kρ ,z)| is too large. In these
examples the array E(Kρ ,z) dimension is (48,1024), and for
10 Neumann iterations of the code, including the segment
shown in Table 1, the execution time is 0.03 s on an older
2.4 Ghz T7500 workstation.

The normalization arrays M(Kρ ,z) and N(Kρ ,z) percent
relative differences shown in Figure 3 have total

−30 −20 −10 0 10 20 30

10−2

10−1

100

Conductivity Profile σ(z)

z [m]

Figure 1: Formation Conductivity Profile σ(z)[S/m].

f = 20 [kHz], σb = 0.5400 [S/m]
NT = 10 I0 = 1 [Amp]
aT = 0.0508 [m] µ0 = 4π×10−7 [H/m]
∆z = 0.012δs [m], Nz = 1024
δs = 1/Im(kb) [m], L = 1 [m]
∆Kz = Kz/Nz, Kz = 2πNz/Z
z(n) = z(1) + (n−1)∆z, n = 1,2, z(1) = −Z /2

Table 2: Parameters used in numerical simulations.

Figure 2: Comparison of magnitudes of |M(Kρ ,z)| as a
function of Kρ and z.

Figure 3: Percent relative difference for M(Kρ ,z) and
computation N(Kρ ,z) versus Kρ and z.
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Figure 4: Residual defined by equation (24) versus Kρ after
2,5 and 9 iterations .
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Figure 5: Families of averaged normalization function for
four choices of background intrinsic wavenumber kb as
shown in legend.

range statistical values: mean(M) = 7.32%, mean(N) =
1.41%, median(M) = 0.81%, and median(N) = 2.24% . If the
extreme values of |z| are excluded, because typically FFT
results are known to have relatively large errors there, the
mean value of M as seen by inspection of Figure 3 is then
no more than a few percent.

Conclusions and discussion

This new Fourier iterative solution to axial symmetric
integral equations is designed to be an efficient numerical
method to compute synthetic induction logs because
the computation consists only of FFT-based forward and
inverse transforms and element-by-element matrix multiply
(∗.∗). The iterative procedure extends response function
theory to the non-linear regime as required, for example,
in high-contrast formations. Unlike the simpler response
function methods, the iterative method solves for all
observation points for a given receiver point. To insure
convergence, the integral equation is renormalized. The
renormalization places additional requirements on the
choice of the background wavenumber kb . The method
is directly extend able to two-dimensional axial formations
allowing for simultaneous invasion and layering. It is
numerically efficient, and thus ideal as a forward model
component in resistivity inversion methods. The ultimate
goal is to apply the method to three-dimensional induction
logging problems.
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