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Abstract   
The interactive visualization of surfaces representing 
the horizons in massive seismic data is a problem 
due to the associated computational cost. Often 
these surfaces are represented by large triangular 
meshes with a vertex in each sample. This 
representation consumes significant part of the 
memory and the display processing time, restricting 
the size of data that can be viewed. However, 
horizons can be generally represented by surfaces 
that contain low varying regions that can be 
represented by a few triangles without incurring in 
significant errors. This work presents an efficient 
method for generating adaptive triangular meshes for 
representing seismic horizons with or without faults 
with waste. The method produces a compact 
triangular mesh that is only refined where the 
variation of the surface requires more triangles. The 
proposed method supports not only the generation of 
a mesh to represent an already interpreted horizon by 
points, but it can also be used to interactively adjust 
the horizon as the interpreter adds new points. 
Results are shown to corroborate the method. 

Introduction 

The visualization of horizons on conventional hardware 
presents certain challenges due to the large number of 
data they contain. The direct approach of displaying every 
single point collected is not always possible or desirable, 
since it would require lots of memory that could be used 
for other tasks in the processing of seismic data. Besides 
that, real data contain considerable noise in most 
applications. Therefore, it is desirable to create a smooth 
surface with the least possible number of elements. A 
mesh that approximates this horizon can represent the 
same information with less data, making it easier to 
visualize it, perform simulations, or any other type of 
analysis that may be necessary. 

The main benefit of this method is its ability to represent 
massive horizons spending little memory quickly and 
efficiently. The mesh is represented by a data structure 
called Corner Table (Coêlho and Gattass 2013). This 
requires little storage space, but still provides fast 
operations on its elements, in addition to supporting 
adaptive subdivision. 

The method only covers the cases where the data points 
are a scalar function of the position in a plane. This type 
of data can represent quite well the topography of a 
region, height maps or simple objects. The purpose of this 
work is to deal with horizons. Cases of salt domes and 
other more complex formations will not be addressed.  

It is common that these geological layers present faults 
that appear as discontinuities on the surface. To 
represent this phenomenon we need a mesh that is both 
smooth and discontinuous at the same time. This paper 
assumes that the faults are already known and does not 
bother to locate them. Once the faults are known, it has 
as an input parameter a mesh, in which the discontinuities 
are inserted in its topology. Having this information the 
mesh is refined where it is necessary to achieve a final 
smooth and precise result. The input mesh can be coarse 
provided that it meets the discontinuity. 

In order to evaluate the performance of the proposed 
method, we used the data from the volume of the 
Netherlands offshore F3 block downloaded from the 
Opendtect website. 

In the next section we present some research done on 
the subject. The details of the method are described in 
Proposed Method section. We present the results in the 
Results section and finally the Conclusion section 
summarizes the work ideas. 

Related Work 

Most research done in the field is dedicated to treat more 
general surfaces than those addressed in this work. Many 
studies have been made in the modeling of complex 
objects (such as salt domes) which cannot be 
represented by a function, and therefore are not covered 
by the proposed method. The best results for this kind of 
problem are obtained using implicit functions and the 
method developed in Mallet (2002) called Discrete 
Smooth Interpolation. Although effective the method is 
rather complex and its computational cost is high. 

The purpose of this work is to deal with horizons. In such 
cases the use of the methods described above is 
unnecessarily complicated and expensive. 

Limited to these cases, there are several approaches 
described in the literature, each with its merit. 

A group of works uses its own points to represent the 
surface. Gregorski et al. (2000) for instance builds B-
splines to describe the points and thus generates a 
smooth surface without producing a mesh of polygons. 
Although interesting these methods require a dense set of 
points and present no noise control. 

Another approach is the explicit methods. They use the 
data points as vertexes of the resulting mesh. These are 
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generally based on Delaunay Triangulation and Voronoi 
diagrams. Among them stands out the α-shape method 
Edelsbrunner and Mücke (1994). Again the main problem 
of these methods is the smoothness and noise. In 
Mederos et al. (2005), the crust algorithm was modified to 
deal with noise, but the result is not smooth. 

Our algorithm falls into the category of implicit methods. 
This works by defining a function f (x, y, z) whose value is 
equal to the distance of the point (x, y, z) to the surface, 
and zero if the point (x, y, z) is on the surface. The 
problem is then to find iso-curve f (x, y, z) = 0 of the 
function. 

The most common way to build this function is using 
radial functions and B-Spline, both guarantee 
smoothness. Most of these however requires the data to 
be regularly displayed and have difficulty dealing with 
discontinuities (Gregorski et al., 2000). Arge and Floater 
(1994) present a solution using radial functions dealing 
with discontinuities and sparse data in square meshes but  
regions with no information should be handled separately 
and their method does not deal with noise in the data. 

In the general 3D case approached by Frank et al. (2007) 
the problem results in a nonlinear system, and DSI is 
used to obtain a solution. 

Because we restrict our problem to points representing a 
function and have the distance from one point to the 
surface as simply being the vertical distance, the implicit 
function is much simpler to be built. It is worth noting that, 
because of this, we only modified the height of each 
vertex and not its position in the xy plane. With these 
simplifications we have a linear system. The authors of 
Hjelle and Dæhlen (2006) describe this method in the 
book Triangulation and Applications 

Least Square 

The least squares method used is well known and 
established in literature. It is based on the minimization of 
the squared error to find the best fit for a set of data. 

The problem becomes simply finding the heights of vertex 
that minimize the error of the triangulation in respect to 

the data points  kkk z,y,x . Since we assume the 

coordinates  yx,  of each vertex are fixed, we define the 

error as the vertical distance from the point to the mesh. 

Proposed Method 

The studied method is summarized in six major ideas that 
guarantee a fast and efficient solution, even with a large 
dataset. They are: 

1. Implicit Function: The surface is constructed as a 
combination of linear functions. 

2. Least Squares: We use the least square method 
to obtain a system of linear equations to find the 
parameter that minimize the error of the implicit 
function. 

3. Smoothing Terms: We add a term that ensures a 
unique and smooth solution. 

4. System Solver: The linear system of equations is 
solved by an iterative method. 

5. Local Refinement: The mesh is refined only 
where the error is greater than a specified 
threshold. 

6. Progressive increase in the number of points: 
Optional step aiming efficiency. 

These six processes are performed repeatedly until the 
desired condition is achieved, as described in the Final 
Algorithm section. 

In the next sections, these ideas are explained in the 
order in which they appear. After that, an overview of the 
algorithm and the treatment of discontinuities is 
discussed. 

Implicit Function 

The first step is the discretization of the surface in a 
number n of nodes. These nodal points are the vertexes 
of the triangulation. Each vertex will have a basis function 

associated to it. The basis functions are iN , and iv , 

which are the associated vertex. These functions have 
the following properties: 

 They are linear in their domain. 

 They have value 1 in the position of its 
associated vertex. 

 They are zero in the adjacent vertexes and in the 
opposite edges. 

 They are zero outside the triangles that contain 
them. 

Figure 1 shows a graphical representation of a basis 
function. 

The linear combination of these basis function is a 
representation of the surface triangulation. It can be 
written as: 

   yx,Nc=yx,f i

n

=i

i
1

 (1) 

The variables nc,,c ...1  are coefficients of f , and 

represent the value that the mesh assumes in the position 

 

Figure 1:  Figure taken from Hjelle and Dæhlen (2006) 
representing the basis function used. 
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of the vertex. This sum has at most three terms different 
than zero for each point (x,y) because of the basis 
functions properties. This implies that the surface is 
defined locally. Changes in a region of the surface, only 
affect a limited neighborhood. 

Least Squares Application 

By applying the least square method, we obtain a linear 
system whose solution is the best approximation of the 
surface to the dataset.  

The locality properties of the implicit function guarantee 
that our system of equations will be sparse and 
symmetric. The matrix is also always positive semi-
definite. 

Smoothing Term 

Often, the triangulation generated is not smooth, 
especially when the data is subjected to noise. Crests and 
troughs may appear due to problems of "over-fitting", 
which is undesirable. 

Moreover, there are situations in which a region of 
triangles has no internal points. To be able to ensure that 
the system has only one solution, it is necessary to have 
at least one data point within at least one of each triangle 
vertex. The region Ω, in Figure 2, for example, does not 
satisfy this condition. Vertexes inside that region have no 
restrictions imposed to them by the data, and their heights 
can have any value without affecting the error of the 
triangulation. Thus, the system is under-defined and 
cannot be solved uniquely. 

To mitigate this issue, we added a penalty term to the 
system. This term is directly related to the triangulation. 
What it does is entangle all the triangles of the mesh, 
thereby creating restrictions usually related to some 
energy functional. 

Two penalty functionals were implemented. They are 
based on the first and second derivative, respectively. 

They are approximated in the discrete case. Both satisfy 
the above conditions and also ensure a linear system with 
a single solution. They are: 

1. Membrane Energy: Based on the first derivative, 
it interprets the surface as a membrane. 

2. Thin-Plate Energy: Based on the curvature 
(second derivative), it interprets the surface as a 
thin sheet. 

The best results were obtained using a combination of the 
two. But it is interesting to set a different weight to each 
one and so be able to adapt the surface as needed. That 
is, if the surface prioritizes the variation of height or 
curvature. 

A more detailed description of the least squares linear 
system and penalty methods can be found in Hjelle and 
Dæhlen (2006). 

System Solver 

Once we have the system ready, it is just a matter of 
finding a good solution technique for this kind of problem. 
We chose the Conjugate Gradient method. Being an 
iterative method, it can be applied to sparse systems that 
are too large to be handled by direct methods, such as 
Cholesky decomposition. Its performance can be 
enhanced using a good initial solution. 

Local Refinement 

A multilevel triangulation is used so we can achieve a 
final mesh with the smallest possible number of triangles 
without losing significant information. The initial mesh is 
coarse and it is refined locally where the error is larger 
than a specified threshold.  

A triangle is subdivided if there are any data points in its 
interior with error greater than a defined limit. 

This is done recursively until a desired condition is 
achieved. In each iteration, we must solve a least squares 
system. However, using the previous solution as an initial 
guess in the conjugate gradient method only a few 
iterations are necessary. Often one iteration is enough. 
The subdivision scheme used was the one described in 
Coêlho and Gattass (2013).  

Progressive increase in the number of points 

Starting with a coarse mesh, working with a lot of points is 
not beneficial. A similar result is obtained when 
approaching two triangles to a million points or to ten 
thousand. Therefore, we start with a small group of data 
points of the set and increment this number until we are 
using all the data. This ensures superior speed while 
solving the problem. 

The question is whether the final mesh will be equivalent. 
Tests done with real data indicate that, with this 
progressive increase, the average error is slightly higher 
in some situations. See more on this in the Results 
Section. However, the value was small even in the worst 
cases and well below the specified error limit. For most 
applications, therefore, this difference is irrelevant.  

Final Algorithm 

Once these ideas are clear the algorithm is shown in 
Figure 3. 

              

Figure 2:  Figure taken from Hjelle and Dæhlen (2006). 
Triangulation scheme on data points. 
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Faults, gaps and discontinuities 

Surfaces can be complex and have discontinuous regions 
or regions where it is not desirable to have 
representation. Horizons, for example, often have several 
faults in its domain. The result must comply with these 
conditions. 

It is possible to reproduce these faults using a pre-
processed mesh with discontinuity represented in its 
topology as input. The adaptation of the mesh to 
discontinuities is a well-studied problem and is beyond 
the scope of this article. The method is limited to 
approximating the surface once the faults are interpreted. 
In this work, it is assumed that the faults are already 
known. 

Because of the progressive refinement the initial mesh 
can be as coarse as it is necessary provided that it meets 
the limitations wanted in the final result. No modification 
of the algorithm is needed. The reason for this is the form 
of the smoothing parameter and the implicit function. Both 
operate on the topology and the refinement propagates 
this structure. Thus the discontinuities are satisfied 
naturally by the method. 

Results 

In our tests, we used the data from the volume of the 
Netherlands offshore F3 block downloaded from the 
Opendtect website. These data have noise, regions 
without information and discontinuities. The method 
proved itself to be robust and efficient, even when dealing 
with a large number of points. Tables 1 and 2 have the 
number of generated triangles, the maximum error, the 
average error, the solution time and the ratio of the 
memory used by the method proposed against the 
traditional method. Note that because of the noise, it is 
not desirable to have zero error. The restriction of 
smoothness prevents all points to be interpolated. The 
limit error imposed was 4.00, and it represents the 
discretization of the time dimension of the data used. 

Each file has close to 1050625 data points. Variables of 
type float were used to store the geometry and variable of 
type in the topology. In traditional representation, data is 
arranged in a regular grid so it can be represented by a 
nxm matrix. Therefore, each point only need one 
coordinated to be described, as the spacing between 
samples is constant. The traditional triangulation uses 3 
variables for each triangle. So each tested surface 

occupies close to 29 Megabytes of memory. In our 
method, the vertexes need 3 coordinates to be described 
and triangulation requires 6 variables, because of the 
Corner Table structure. Even with these conditions, it was 
possible to reduce memory necessary, since the number 
of elements used is much lower. 

Table 1 shows results using progressive increase of the 
number of points, while Table 2 uses the total number of 
points from the beginning. Figures 4 and 5 are the 
reconstructed data surface "Map 1" described in the 
Tables, Figures 6 and 7 are the surface "Map 5" and 
Figure 8 shows the approximation of a region with no 
data. 

 
Table 1: Performance Data of the algorithm with gradual 
incrementation of points 

Gradual incrementation of the number of points 

Surface Triangles Max 
Error 

Average 
Error  

Time (s) Memory 
Ratio 

Map 0 151815 7.88 0.716 24 15.52% 

Map 1 240388 10.74 0.821 34 24.57% 

Map 2 53482 11.08 0.630 14 5.47% 

Map 3 76811 7.68 0.681 12 7.86% 

Map 4 179621 9.65 0.710 23 18.37% 

Map 5 50265 17.5 0.671 11 5.14% 

Map 6 449584 5.65 0.840 34 45.96% 

Map 7 151733 5.21 0.830 18 15.52% 

 
Table 2: Performance Data of the algorithm without 
gradual incrementation of points 

Using All Points 

Surface Triangles Max 
Error 

Average 
Error 

Time (s) Memory 
Ratio 

Map 0 149270 10.82 0.678 28 15.26% 

Map 1 240095 10.17 0.756 37 24.54% 

Map 2 53569 10.82 0.615 14 5.48% 

Map 3 77255 18.04 0.679 17 7.90% 

Map 4 177918 12.56 0.714 25 18.20% 

Map 5 49763 16.31 0.661 16 5.09% 

Map 6 448014 13.32 0.841 44 45.80% 

Map 7 155839 12.17 0.816 26 15.94% 

Comparing the two percentually in Table 3, it is noticeable 
the reduction of the execution time in most cases. In the 
worst case the time remained the same. Although there 
was a small increase in the average error, this was far 
below the established limit. However, the maximum error 
tends to decrease as well as the number of bad triangles, 
with the gradual increase of points, which is desirable. 
This is because of the imposed stopping conditions. 
Negative values indicate an improvement of the 
incremental method, and positive values indicate 
worsening. 

 

Figure 3: Final Algorithm 
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Table 3: Algorithm performance comparison with and 
without gradual increase of data points. 

Comparison 

Surface Triangles Max 
Error 

Average 
Error 

Time (s) Memory 
Ratio 

Map 0 1.70% -27.2% 5.61% -14% 1.70% 

Map 1 0.12% 5.6% 8.49% -8% 0.12% 

Map 2 -0.16% 2.4% 2.36% 0% -0.16% 

Map 3 -0.57% -57.4% 0.36% -29% -0.58% 

Map 4 0.96% -23.2% -0.45% -8% 0.96% 

Map 5 1.01% 7.3% 1.56% -31% 1.01% 

Map 6 0.35% -57.6% -0.11% -22% 0.35% 

Map 7 -2.63% -57.2% 1.51% -30% -2.64% 

 

           
Figure 4: Surface "Map 1" generated by the proposed 
method. 

           
Figure 5: Mesh associated with "Map 1" generated by the 
proposed method. 

 
Figure 6: Surface "Map 5" generated by the proposed 
method. 
 

 
Figure 7: Mesh associated with "Map 5" generated by the 
proposed method. 

        
Figure 8: Mesh approximation over a region with no data. 
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As for gaps and faults, no change in the algorithm itself is 
necessary. Having a mesh with a topology structure 
already adapted, satisfactory results are shown in Figures 
9 and 10.  

 
Figure 9: Surface generated over fault. 

  

 

 
Figure 10: Mesh generated over fault. 

Conclusion 

The algorithm is simple, efficient, computationally light 
and can be performed iteratively with a considerable 
number of points. It is based on the construction of an 
implicit function and uses the least squares method to 
generate a linear system. The smoothing term ensures 
that the result is smooth, even when noise is present and 
it extrapolates the solution to regions without data. 
Discontinuities are not a problem if they are treated in 
pre-processing of the initial mesh, and the local 
refinement guarantees a triangulation with a small 
number of elements. 

Good results were obtained using real data under 
adverse conditions. The method proves to be useful to 
model seismic horizons, especially those with many 
irregularities. The construction of the surface can be 
made as the data points are interpreted, also providing 
the user with a more accurate intuition in the initial stage 
of the interpretation. Furthermore, it was possible to 
represent the same surface with a much smaller number 

of elements, thus saving computational resources as 
proposed in this work.  
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