
Fast empirical seismic denoising
Julián L. Gómez* (UNLP/CONICET), Danilo R. Velis (UNLP/CONICET), and Marcelo Roizman (GEONODOS)

Copyright 2015, SBGf - Sociedade Brasileira de Geofísica

This paper was prepared for presentation during the 14 th International Congress of the 
Brazilian Geophysical Society held in Rio de Janeiro, Brazil, August 3-6, 2015.

Contents  of  this  paper  were  reviewed  by  the  Technical  Committee  of  the  14 th 

International  Congress  of  the Brazilian  Geophysical  Society  and do not  necessarily 
represent any position of the SBGf, its officers or members. Electronic reproduction or  
storage of any part of this paper for commercial purposes without the written consent 
of the Brazilian Geophysical Society is prohibited.
______________________________________________________________________

Abstract

In this work we present a new strategy to accelerate the 
computation  of  the  so-called  complete  ensemble 
empirical  mode  decomposition  with  adaptive  noise 
(CEEMDAN), a data-driven technique that can be used to 
denoise seismic data. The new implementation replaces 
the  use  of  the  cubic  interpolation  scheme,  which  is 
required to calculate the signal  and residual envelopes, 
by a simple window averaging. In addition, and due to the 
fact that the energy distribution of the modes acquires a 
different behavior, the new strategy facilitates the mode 
selection  needed  to  carry  out  the  denoising.  As  a 
consequence, the low and high frequency content of the 
signals  can  be  efficiently  and  effectively  isolated  in  a 
fraction of the time consumed by the standard CEEMDAN 
approach for the same amount of noise attenuation. We 
compare the performance of both approaches and apply 
them to  successfully  denoise  various  microseismic and 
seismic reflection field records.

Introduction

The CEEMDAN (also known as CEEMD) is a data-driven 
and noise-assisted algorithm proposed by Torres et al., 
2011, that decomposes an input signal sn of length N into 
a finite set of K intrinsic mode functions (IMFs) or modes 
and  a  unique  residue  Rn.  The  CEEMDAN  is  a 
improvement  over  the  ensemble  empirical  mode 
decomposition EEMD of Wu et al. (2009), which in turn is 
based  on  the  empirical  mode  decomposition  EMD  of 
Huang et al. (1998). The CEEMDAN decomposition can 
be described by

                          sn=∑
k=1

K

IMFn
k+Rn .                     (1)

The modes IMFkn, where subscript k = 1,...,K denotes the 
order, have zero mean and a number of extrema equal or 
different at most by one to the number of zero crossings 
(Huang et  al.,  1998).  Each  k-th mode is  obtained in  a 
sequential  order  by  the  algorithm  and  they  exhibit  a 
decreasing frequency content; being the high frequencies 
captured by the first modes and the low frequencies by 
the final modes.

The  CEEMDAN  algorithm  requires,  a  sifting  stoppage 
criterion,  the  number  of   noise  realizations  and  the 
injected noise amplitude to initiate the decomposition of 

the  signal  sn by  averaging  over  its  noise-assisted 
realizations.  The  necessary  steps  to  implement  this 
empirical  decomposition  are  provided  in  Torres  et  al. 
(2011).  The  sifting  is  crucial  in  the  CEEMDAN 
decomposition since its purpose it  to  obtain the modes 
from the input signal.  The sifting aims to calculate and 
subtract  the  mean  envelope  from  the  signal  and  its 
residues until a stoppage criterion, which is related to the 
IMF condition of zero local mean, is met. A simple and 
fast stoppage criterion is to sift a low but fixed  number of 
times  (Wu  et  al.,  2009).  To  improve  the  cancellation 
property of the injected white noise realizations, following 
Lin  2012,  the  noise  realizations  consist  of  pairs  of 
opposite  sign.  This  implies  that  half  of  the  noise 
realizations have to be actually calculated, being also an 
improvement over the original algorithm speed.

The standard seismic empirical denoising consists in the 
subtraction of the low order IMFs from the input signal; 
the denoised counterpart sdn  of each seismic trace  sn is 
obtained then by

                        sn
d=sn−∑

k=1

M 1−1

IMFn
k

.                     (2)

The number M1  in principle is a user-defined parameter, 
usually it is M1 = 2 for most applications.

A  refinement  of  the  standard  denoising  consists  in 
removing also high order modes from the signal,

             sn
d=sn−∑

k=1

M 1−1

IMFn
k− ∑

k=M 2

K

IMFn
k

.         (3)

The parameter M2 can be selected by inspection of the 
distribution of the energy of each decomposed mode. As 
a  measure  of  the  energy  of  the  IMF  of  order  k,  we 
propose  the  following  normalized  median  absolute 
deviation:

          Ek=median (∣IMFn
k∣)/max(Ek ) ,           (4)

where max(Ek) means to divide by the maximum of all the 
obtained  mode  energies.  Once  an  energy  map  is 
constructed, a detection of the noise-related energies at 
higher modes is necessary to appropriately set the value 
of M2 for each seismic trace.

Fast CEEMDAN

The CEEMDAN obtains the mean envelope required for 
the sifting process as the average of the upper and lower 
envelopes of the data. These envelopes are computed by 
natural spline interpolation of the maxima and the minima 
of  the  signal  and  its  residues.  When  faced  with  an 
important seismic data volume, this way of obtaining the 
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envelopes  turns the  CEEMDAN denoising  a very time-
consuming process (Battista et al., 2007).

To  speed  up  the  denoising  process  while  keeping  the 
implementation as simple as the original CEEMDAN, we 
propose to use a simple window average to obtain directly 
the mean local envelope required in the sifting loop. The 
window average is  calculated  by  convolving  the  signal 
with  a normalized  Hanning window of  length  Mw.  This 
window  averaging  is  devised  to  denoise  and  not  for 
interpretation of the individual modes. The window length 
can be obtained by estimating an effective period T from 
the average of the number of time samples between all 
consecutive  local  maxima and minima of  each seismic 
trace.Then,

                              Mw=CT ,                          (4)

where  C is a user-defined variable  that accounts for the 
number  of  periods  spanned  by  the  window.  We also 
choose as a final stage the average of the resulting Mw of 
each trace in order to have one parameter for the whole 
seismic dataset.

Figure 1: Synthetic microseismic examples. a) Noise-free 
signal.  b)  Signal  with  random noise  and c)  signal  with 
random and low-frequency noise.

Figure 2: Energy mode map of the synthetic microseismic 
traces.  a)  Noise-free data,  b)  data with  white  noise,  c) 
data  with  white  and  low  frequency  noise.The  vertical 
scale is blue for 0 and yellow for 1.

Our proposed methodology has two advantages over the 
standard  empirical  denoising.  First,  the  removal  of 
random noise,  that  is obtained with  a low value of  the 
parameter C and M1 = 2, is computed in a fraction of the 

time  required  by  the  CEEMDAN.  The  drop  in 
computational time is most noticeable when the length of 
the data input is large. The key factor that controls this 
improvement resides in the convolution that replaces the 
interpolation scheme in  the sifting process.  Second,  by 
setting  a  large  value  for  C  while  keeping  M1  = 2,  low 
frequency signal attenuation is possible without the need 
to estimate the M2 parameter in equation (3). This is due 
to the fact that the window averaging always concentrates 
the energy in the first modes. The standard CEEMDAN 
would require an energy-based criterion for the selection 
and location of the higher order IMFs to estimate M2. This 
means  that  a  full  decomposition  in  several  modes  for 
each trace has to be performed. This full mode calculation 
makes  the  removal  of  low-frequency  content  a  much 
slower  process  that  the  fast  CEEMDAN  alternative. 
Furthermore, the criterion to detect the noisy modes may 
not be easily automated, requiring a visual interpretation 
by the user.

We consider  a  synthetic  example  to  illustrate  the  two 
previous  advantages.  Figure  1a  shows  a  noise-free  8-
channel synthetic vertical microseismic gather. In Figure 
1b, white noise is added to the data. In Figure 1c, white 
and  low-frequency  noise  are  both  present.  The  mode 
energy of this examples is calculated for the CEEMDAN 
decomposition  (Figure  2).  The  noise-free  data  exhibit 
more  or  less  an  evenly  distributed  energy  in  three 
consecutive  modes  (Figure  2a).  When  white  noise 
contaminates  the  data,  the  energy  shows  strong 
amplitudes mainly concentrated at the first mode (Figure 
2b). The removal of the first mode then consists in the 
standard empirical denoising with CEEMDAN (Figure 3a). 
When low  frequency  noise  is  also  injected,  an  energy 
trend appears  at  the higher  modes alongside with  the 
random noise at the first  mode (Figure 2c). To remove 
these  low  frequency  components,  a  localization  and 
removal  of  the  energetic  higher  modes  is  necessary. 
When  the  energy  map  is  taken  into  account  in  the 
standard CEEMDAN (Figure 3c), the noise attenuation is 
improved with respect (Figure 3b), but the processing is 
much slower. To achieve a similar result to Figure 3c, the 
fast  CEEMDAN  denoising  with  combined  C  is  applied 
(Figure 4c). The partial outputs with C = 5 and C = 10 are 
shown respectively in Figures 4a and 4b. The combined 
result  consists  in  subtracting  the  outputs  of  different  C 
from the data. No energy map in necessary with the fast 
method and the processed signal is obtained at least ten 
times faster than the standard empirical denoising.
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Figure 3: Standard CEEMDAN denoising: a) result from 
Figure 1b; b) and c) results from Figure 1c without and 
with energy-based criterion respectively.

Figure 4: Denoising of the synthetic gather of Figure 2c 
with  fast  CEEMDAN.  a)  Noise  component  trapped  for 
C=5 and b) for C=10. c) Combined result after subtracting 
data in a) and b) from the original signal.

Examples

Triaxial  microseismic  record.  As  a  first  real  data 
example,  we  present  a  vertical  triaxial  microseismic 
record from Neuquén Basin, Argentina, that was acquired 
in a monitor well  about 500 m away from the extraction 
point. Each record consists of 8 traces spaced 30 m and 
sampled at 1 ms. The components are shown in Figure 5. 
Channel 5 in the x and z components is corrupted by low-
frequency noise due probably to a faulty receiver. Other 
channels  are also severely contaminated by noise.  We 
processed this data with the fast CEEMDAN to remove 
low  and  high  frequency  content  (Figure  6).  The  low 
frequency  content  in  this  case  is  mainly  due  to  the 
damaged  receiver.  As  can  be  seen  in  Figure  7,  the 
sinusoidal  character  of  channel  5  is  trapped  and  is 
removed  in  the  final  combined  processing.  The  result 
shows that  the amplitude information  of  channel  5  has 
been  improved  and  the  random  noise  has  been  also 
effectively  attenuated.  With  the  standard  CEEMDAN  a 
decomposition on several modes (up to ten) is necessary 

to trap the low-frequency signals. Then an energy-based 
criterion  must  be  applied  to  each  trace  to  detect  and 
remove  the  modes  due  to  the  faulty  trace.  The  fast 
algorithm takes 0.2 s to process each component (0.1 s 
for  each value of  the parameter  C).  In  comparison the 
standard  CEEMDAN  takes  4.5  s  for  each  component 
(Figure 8). The proposed algorithm is in this case is more 
than 20 times faster. If an energy-based criterion is used 
for  the  standard  CEEMDAN,  then  the  results  are 
improved (Figure 9), but the computational time, due to a 
full  decomposition of  each trace,  increases to  28  s  for 
each  component.  Then  the  processing  is  140  times 
slower  than  our  fast  algorithm.  The  denoising  of  low 
frequency noise can aid in the improvement of automatic 
picking algorithms by bringing amplitude information from 
traces that otherwise would be discarded due to their poor 
S/N ratio.

Figure  5:  Three  component  microseismic  record.  a)  X-
component, b) y-component and c) z-component.

Figure 6: Denoised microseismic data by fast CEEMDAN 
with combined C parameter. 

Seismic record with an earthquake.  The second and 
final example is a typical seismic record acquired near the 
Andes mountain range. The data displays an earthquake 
that shows as a set. of horizontal seismic events starting 
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above 1 s (Figure 10a). The data consists of 31 traces 
sampled  at  2  ms.  The  combined  denoising  with  fast 
CEEMDAN is obtained after 8 s of computation (Figure 
11a). A similar result with the standard CEEMDAN takes 
40 s (5 times slower) and with removal of higher modes it 
consumes 233 s; which is 30 times slower (Figure 11b). 
The high frequency attenuation is similar in both cases, 
but the continuity of the horizontal events are significantly 
improved by the fast CEEMDAN.

Figure 7: Low frequency amplitudes from running the fast 
CEEMDAN with high C.

Figure  8:  Denoised  microseismic  components  by  the 
standard CEEMDAN without energy criterion. 

Figure  9:  Denoised  microseismic  components  by  the 
standard CEEMDAN with energy criterion.

Figure 10: Portion of a seismic record contaminated with 
an earthquake: a) original data, b) C = 3 result and c) C = 
6 result.

Figure 11: Results of denoising the seismic gather with a) 
fast  CEEMDAN  with  combined  C  and  b)  standard 
CEEMDAN.

Conclusions

A fast  implementation of  the CEEMDAN algorithm was 
successfully  applied  for  the  denoising  of  coherent  and 
random noise in microseismic and seismic data. The fast 
implementation allows for the processing of an important 
volume  of  seismic  traces  in  an  reasonable  time.  The 
CEEMDAN algorithm is modified by eliminating the need 
for cubic interpolation to obtain the mean local envelope. 
The  denoising  results  from  the  fast  CEEMDAN  are 
similar to the standard algorithm with spline interpolation. 
However the computational cost of the proposed method 
is at least one order of magnitude lower.
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