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Abstract

This paper addresses the problem of gravity inversion
to determine the 3D basement relief of sedimentary
basins. It is a nonlinear optimization problem
where the gravity anomalies attributable to basement
interfaces above which the density contrast varies
continuosly with the depth are analyzed. We
use the Levenberg-Marquardt (LM) algorithm which
needs a key input parameter called the regularization
parameter λ to deal with the singularity of the normal
equation matrix in the linearized problem at each
iteration. The generalized cross-validation (GCV)
and Regińska’s methods for estimating the optimal
regularization parameter are tested through numerical
experiments on a synthetic data set. Also, we
implemented the LM algorithm with a hybrid message
passing interface (MPI) and Open Multi-Processing
(OpenMP) approach to avoid the high proccesing
time. This lead to a fast and reliable algorithm,
which produced satisfactory results in mapping the
basement topography.

Introduction

One of the important applications of the gravimetric method
is the estimation of the depth of the sediment-basement
contact in a given sedimentary basin. The basement relief
of a sedimentary basin generally controls the deposition
of the sediments and overlying structures. Hence, the
structural analysis of the basement plays a significant
role in understanding the petroleum system. Generally,
the gravity inversion methods for estimating the basement
relief of a sedimentary basin may be grouped into two
categories. The first group considers that the density
contrast between the sediment and the basement is
constant. The second group assumes a densisty contrast
variation with the depth due to the compaction of the
sediment. In the second category methods, Chakravarthi
and Sundararajan (2007), for example, have assumed
that the density contrast decays with the depth according
to a parabolic law and have developed an inversion
scheme based on the Levenberg-Marquardt algorithm to
estimate the regional gravity anomaly and the depth of
the 3D basement relief of the sedimentary basins. In

this work, we followed the same approach proposed by
Chakravarthi and Sundararajan (2007) and we introduced
the generalized cross-validation and Regińska’s criteria for
automatic selection of optimal regularization parameter.
The performance of these criteria were compared by
using a synthetic data set. The validation of the GCV
method by synthetic data rather than real cases, has
been completely demonstrated in a previous work (Mojica
and Bassrei, 2014). It’s worthwhile to mention that the
efficiency of the gravity inversion methods applied to
the interpretation of sedimentary basins depends on the
number of observations and parameters to be estimated
(usuallly the number of observations and parameters are
made equal), making it very poor when these are very
large. Therefore, the development of efficient gravity
inversion methods is of utmost importance. To adress
this difficulty, recently Silva et al. (2014) proposed an
improved Bott’s method, which overcomes the known
limitations of the Bott’s method and allows a fast recovery
of the basement relief. Alternatively, here we used a
hybrid programming model combining MPI and OpenMP
that tackles the most computationally expensive parts
of the inversion procedure: The forward modeling, the
Jacobian matrix computation and the search for the
optimal regularization parameter through a regularization
parameter choice method such as GCV or Regińska’s
method.

Methodology

Forward Problem

A given basin is represented by a series of rectangular
prisms of known horizontal dimensions dx and dy with tops
that coincide with the Earth’s surface and bottoms that
coincide with the interface of the basement. We assume
that the gravity data are interpolated on a regular grid
with coordinates x and y corresponding to the horizontal
coordinates of the centers of the prisms (Figure 1).

Because g = (g1, . . . ,gM)T is an M-dimensional vector
containing the gravity observations, presumably produced
by the relief of the basement of the sedimentary basin, the
parameters z j, j = 1, ...,M to be estimated, regarding the
depths of the basement in M discrete grid points are related
to the ith vertical component of the gravity anomaly gi by
the nonlinear relationship:

gi(xi,yi,zi) =
M

∑
j=1

fi(z j), i = 1, . . . ,M. (1)

The nonlinear function fi(z j) at the ith point produced by
the jth prism is expressed analytically in the following

Fourteenth International Congress of the Brazilian Geophysical Society
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Figure 1: Schematic representation of a gravity anomaly
produced by the basement interface. The sedimentary pack
is discretized into a grid of 3D vertical prisms with thicknesses
(z2 − z1) that are the parameters to be estimated. The diagram
on the right shows the contribution to the anomalous gravitational
field gi(xi,yi,zi) at the ith observation point produced by the jth
prism.

equation:

fi = γ

∫ z2

z1

∫ yo j+dy/2

yo j−dy/2

∫ xo j+dx/2

xo j−dx/2
∆ρ(z)

×
zi− z′j

[(xi− x′j)
2 +(yi− y′j)

2 +(zi− z′j)
2]3/2

dx′dy′dz′, (2)

where γ is the gravitational constant, and xo j and yo j
are the x and y coordinates of the jth prism center,
respectively. We assume that the density contrast
between the basement and the sedimentary basin varies
parabolically with the depth z, according to a parabolic law
(Chakravarthi et al., 2002).

Inverse Problem

The nonlinear inverse problem of estimating z from
gobs may be formulated as the optimization problem of
minimizing the cost function

Φ =
M

∑
k=1

(gobs
k −gcalc

k )2, (3)

where, gobs
k is the observed anomaly, gcalc

k is the calculated
anomaly and M is the number of observations, which for
simplicity is set equal to the number of prisms. This is
minimized using the technique of Marquardt (1963). Thus,
M normal equations are formulated, as follows

M

∑
j=1

M

∑
k=1

∂gcalc

∂ zi

∂gcalc

∂ z j
(1+δi jλ )δ z j =

M

∑
k=1

[gobs
k −gcalc

k ]
∂gcalc

∂ zi
(i = 1, . . . ,M), (4)

where

δi j =

{
1 for i = j,
0 for i 6= j.

λ is the regularization parameter and zi represents
parameters. Defining J as the Jacobian (the matrix of the
partial derivatives) and writing (4) in matrix form, we obtain
the following equation:

(JT J+λ I)δz = JT
δg, (5)

which is solved for the correction vector δz. The partial
derivatives of equation (4) can be evaluated numerically
or analytically. In this inversion scheme, the derivatives
are calculated numerically. The variation in the parameters
over the initial guess is determined using the relationship
in equation (5). The updated parameters are obtained,
and a new cost function is calculated using equation (3) at
each iteration. The performance of the inversion scheme
is evaluated using the relative Root Mean Square (RMS)
error criterion related to the data and the model, which are
calculated respectively, by the following equations:

ε
g
RMS =

√
∑

M
k=1(g

obs
k −gcalc

k )2√
∑

M
k=1(g

obs
k )2

×100%, (6)

and

ε
z
RMS =

√
∑

M
k=1(z

true
k − zest

k )2√
∑

M
k=1(z

true
k )2

×100%. (7)

Automatic selection of regularization parameter

A great variety of techniques for the regularization
parameter choice have been developep and well described
in literature; see for instance Hansen (1998). These
techniques can be broadly divided into two classes:
techniques that involve the knowledge of the error norm
and techniques that, in contrast, seek to extract such
information from the observations. Here we discuss the
use of two techniques from the latter group for the particular
inverse problem previously defined.

Generalized cross-validation

The major motivation of using the GCV to find an optimal
value for λ is that a good value should predict missing
data values. Specifically, if an arbitrary measurement
is removed from the used data, then the corresponding
regularized solution should be able to predict the missing
observation. The GCV functional data is given by (Wahba,
1990):

GCV (λ ) =
‖gobs−g(zλ )‖2

{Tr[I−A(λ )]}2 , (8)

where, Tr[·] stands for the trace of a square matrix, and

A(λ ) = J(JT J+λ I)+JT . (9)

The GCV method has been applied by various authors
in the inversion of geophysical data (Farquharson and
Oldenburg,2004; Vatankhah et al., 2014).
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Regińska’s method

Regińska (1996) proposed a parameter choice method
related to the L-curve criterion for Tikhonov regularization.
This method can be adapted without difficulty to any
situation in which the regularization parameter is discrete.
The method is to find the minimizer of the functional

Ψν (λ ) = ‖gobs−g(zλ )‖2‖zλ ‖2ν , ν > 0, (10)

where ν is a user-defined parameter. We used ν = 1 in our
numerical experiments.

The Regińska’s method have been recently applied in the
estimation of the discrete Hilbert transform (Roy, 2013),
and in an improved adaptive iterative method for performing
a downward continuation of the potential-field data from
a horizontal plane (Zeng et al, 2013). These methods
were designed for linear inverse problems, but they can
also be applied to nonlinear problems, as they only
require the knowledge of the residual r(λ ) = gobs−g(zλ )
corresponding to each regularized solution.

Parallelization

The recent increase in availability of powerful multiple-
core central processing units (CPUs), as well as the use
of graphics processing units (GPUs) for parallelizing the
calculations required for intensive computation tasks, offers
a new opportunity to improve the efficiency of potential-
field data inversion. Some works that consider the use of
multi-CPU platforms in the field of forward/inverse gravity
problems are Wilson et al. (2011), Čuma et al. (2012)
and Couder-Castañeda et al. (2015). Here, we developed
a parallel approach that uses a hybrid MPI/OpenMP
programming model on a multi-core cluster for delaying of
the high processing time of the data inversion procedure.
We adopted parallelization in three key parts of the
inversion algorithm.

Forward modeling subroutine: it is natural to arrange the
design forward computation as loop over the observations
and prisms, because the gravitational anomaly can be
approximated at any point by summing the effects of all
the prisms over that point. This makes using OpenMP to
distribute the prisms over the threads a natural choice for
parallelization.

Jacobian computation: different rows of the Jacobian
matrix can be computed independently from each other.
Subsequently, the parallelization is performed in MPI by
distributing the Jacobian matrix in row blocks among the
cluster nodes, where each node is responsible for the
calculation of a block matrix. Then, the matrix components
(blocks) are sent to the master node in charge of the
construction of the matrix.

Search for the optimal regularization parameter : the
calculation of the optimal regularization parameter by GCV
and Regińska’s methods is a time-consuming process,
because these methods need the regularized solution for
each λ . The parallelization is performed using MPI to
distribute a vector with various values of λ between the
cluster nodes; once this distribution is made, we use
OpenMP in the nodes, so that each thread within the node
performs a matrix inversion using a particular value of λ .

Simulations were performed on Aguia cluster from the
Research Center in Geophysics and Geology at the
Federal University of Bahia, which has 28 nodes divided
into two groups. The first group contains 13 nodes with
two quad-core Intel Xeon E5420 processors with a clock
speed of 2.5GHz and 15.7GB of RAM. The second group
contains 15 nodes, each of which has two quad-core Intel
Xeon 5620 processors with Hyper-Threading Technology
running at 2.4GHz and 23.6GB of RAM. We ran one
MPI process per cluster node (using nodes of the second
group), with each process launching a specific number of
OpenMP threads - one thread per processor core.

Results

We evaluated the use of the GCV and Regińska’s methods
for a synthetic data example. The simulated basin
(Figure 2b) is composed of two sub-basins interconnected
in the north-south and northwest-southeast directions.
The northern sub-basin has an elongated rhombohedral
geometry northward and is limited by steep grades
corresponding to normal faulting, whereas the southern
sub-basin is a typical rift basin known as a half-graben,
with its eastern edge defined by a fault in the northwest-
southeast direction. It is discretized through 50 × 28
grid of horizontally juxtaposed rectangular prisms with
horizontal dimensions of 1.5 km, tops at surface, and whose
thicknesses model the basement depths.
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Figure 2: (a) Noise-corrupted Bouguer anomaly (b)
Contour map and perspective view of the true basement
relief.
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We adopted an a priori model for which the initial depth
is defined by a theoretical formula Chakravarthi and
Sundararajan (2007), assuming that the value of the
measured gravity at each grid node is given by a horizontal
infinite slab with parabolically varying density contrast (first
a priori). We also considered an a priori model with a
constant initial depth equal to 2.5 km (second a priori). All
simulations were performed using noisy data. Basically
pseudorandom Gaussian noise with zero mean and a
standard deviation of 0.1 mGal was added to the theoretical
anomaly (Figure 2a). Due to space limitations we show
only the results for the second a priori model, although all
simulations are summarized in Table 1.

(a)

(b)

Figure 3: Contour maps and perspective views of the
estimated basement reliefs using the (a) GCV and (b)
Regińska’s parameter-choice methods.

Figures 3a and 3b show the estimated depths of the

basement relief using the GCV and Regińska’s parameter-
choice methods, respectively. The estimated basement
reliefs (Figures 3a and 3b) show an excellent agreement
with the true basement relief (Figure 2b), reflecting the
good performance of both parameter-choice methods.
However, from the results summarized in Table 1 it can
be noticed that there is a slight difference between the
errors related to the data and model for both methods.
Figure 4 contains a plot of the GCV (λ ) and Ψν (λ ) curves
at each iteration, which are depicted by a blue solid line
with empty circles. The optimum regularization parameter
is associated with the minimum of the curves.
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Figure 4: Plot of the GCV (λ ) and Ψν (λ ) curves (eqs. 10
and 9). The λ chosen at each iteration (number) is marked
by a filled red circle and by a red vertical dashed line.

An interesting result is that the iterative process converged
to the true solution in just six iterations when the
GCV criterion was used with the MPI/OpenMP hybrid
parallelization. In Mojica and Bassrei (2014), the GCV
implementation used a pure MPI approach, and the
iterative process converged in 17 iterations. This difference
can be easily explained by the fact that the MPI/OpenMP
implementation allows the use of a greater number of λ

values (until 91).

From our experiments, we found that a combination of 12
MPI processes and 12 OpenMP threads gives an overall
best performance and makes the inversion algorithm more
than two orders of magnitude faster than the sequential
inversion algorithm.

Conclusions

In this paper, two different methods for estimating the
optimal regularization parameter λbest have been tested
in the problem of gravity inversion for determining
the 3D relief of sedimentary basins using a synthetic
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Table 1: Results of all simulations

A priori model Method ε
g,initial
RMS (%) ε

g
RMS(%) ε

z,initial
RMS (%) ε

z
RMS(%) Iterations λbest Time(s)†

1 GCV 10.84065 0.14241 18.37159 2.30920 4 80,1,60,1×105 935

Regińska 10.84065 0.12993 18.37159 2.10228 4 80,0.1,200,800 864

2 GCV 64.72751 0.30886 77.77742 3.33211 6 200,200,200,90,5,1×105 1402

Regińska 64.72751 0.19095 77.77742 2.85640 7 200,200,200,90,3,70,6×104 1546

†Time obtained using 12 MPI processes, each of which using 12 OpenMP threads

data set. We conclude that both parameter-choice
methods performed well in the problem addressed
here. Furthermore, a parallel algorithm that tackles the
most computationally expensive parts of the inversion
procedure was implemented and validated using a hybrid
methodology with OpenMP and MPI. This leads to a fast
and reliable algorithm. In the near future, we plan to
adapt our parallel inversion algorithm in order to deal with
another kind of regularizations (First-order Tikhonov and
Total variation regularizations) and besides, apply it in the
inversion of real data.

References

Chakravarthi, V., Raghuram, H. M. and Singh, S. B.
(2002) Forward gravity modeling of density interfaces
above which the density contrast varies continuously with
depth. Computers & Geosciences, 28, 53-57.

Chakravarthi, V. and Sundararajan, N. (2007) 3D gravity
inversion of basement relief - A depth-dependent density
approach. Geophysics, 72, I23-I32.
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