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Abstract 

Pore geometrical parameters derived from digital 
image analysis (DIA) of thin sections have recently 
been used to improve the coefficient of determination 
(R2) of permeability versus porosity (e.g. Weger et al., 
2009). Despite an great improvement was observed, 
no spatial information of the pore structure was 
considered, as DIA parameters were obtained from 
2D datset analysis. Here, we link pore space 
parameters, obtained from 3D images, to 
experimental physical properties of carbonate rocks 
to improve permeability predictions. Results show 
that applying a combination of porosity, pore size and 
3D geometrical parameters to permeability 
significantly improves the adjusted coefficient of 
determination ( 2R ). These results can be interpreted 
to reflect a pore geometrical and pore size control of 
permeability prediction. 

Introduction 

A large fraction of the world’s hydrocarbons are stored in 
carbonates rocks, which are highly prone to post-
depositional alteration, that modifies the pore structure, 
creating or destroying porosity, changing permeability and 
acoustic properties (Hollis et al., 2010; Castro and Rocha, 
2013). 
Carbonate rocks present a wide range of permeability for 
the same porosity value due to a marked variability in the 
connectivity of pores, both with respect to average 
coordination number and pore throat diameter (Ahr, 
2008). Jivkov et al. (2013) demonstrated that coordination 
number is a more important control parameter on 
permeability than total porosity. However, pore geometry, 
pore throat radius and coordination number cannot be 
reliably quantified using thin sections images, as three-
dimensional information cannot be assessed, X-ray 
tomography can be used to determine these parameters 
and also to visualize the pore and matrix structures. In 
this study, we show how information regarding pore 
space, obtained by X-ray tomography, can improve the 
prediction of permeability on a suite of Albian carbonate 
rocks. We extract tortuosity, coordination number, pore 
shape, size and volume, from 3D images of the pore 
space and incorporate them into Kozeny model for 
permeability estimation. 

Reservoir Geology 

In this study, a suite of Post-Salt, Albian carbonates from 
two neighboring wells (W1 and W2) within the Campos 
Basin (Figure 1) were analysed The suite is mostly 
composed of grainstones and packstones containing 
oncolites, peloids, oolites and bioclasts. Here, the focus 
was on ooliticgrainstones (og) and cemented grainstones 
(cg). Oncolite/oolite-rich skeletal grainstones and clean 
packstones comprise the best quality reservoir facies with 
porosity ranging from 20 to 34% and permeability 
reaching values of 2000 mD, and usually greater than 100 
mD (Bruhn et al., 2003). The samples comprise more 
than 95% calcium carbonate with minor (< 2%) detrital 
quartz, dolomite and rare feldspar. 

 
Figure 1 – Campos Basin’s location map. In red, 
Albiancalcarenite reserves (modified from Bruhn et al., 
2003)  

  
Figure 2 – Thin sections photomicrography of analyzed 
samples (red bar 300 µm): (Left) W2-01 (φ=16.3%, 
k=0.24mD) poorly sorted peloidal skeletal pack-
grainstone; (Right) W2-03 (φ=21.9%, k=2.02mD) poorly 
sorted oncolitic peloidal skeletal packstone 
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Figure 3 – Thin sections photomicrography of analyzed 
samples (red bar 300 µm): (A) W1-01 (φ=23.0%, 
k=8.95mD) moderately sorted oolitic grainstone within 
thin grain cement; (B) W1-02 (φ=25.7%, k=222mD) 
moderately sorted grainstone within calcite cement; (C) 
W1-05 (φ=28.9%, k=602mD) moderately well sorted 
peloidal skeletal grainstone within primary interparticle 
macropores and (D) W1-07 (φ=22.9%, k=9.78mD) poorly 
sorted oncolitic peloidal skeletal grainstone in which the 
primary interparticle pore network has been solution 
enhanced 

Experimental Methods 

Measurements of efective permeability were conducted 
on 1.5” plugs using a helium porosimeter, where the gas 
flow rate (q), outlet (P0) and inlet (Pi) pressures were 
measured. After, the permeability was determined by 
Darcy’s law for gasses – Eq. 1, where k is the 
permeability, µ is the fluid viscosity, L and A are, 
respectively, the length and the cross-sectional area of 
the sample, and Patm is the atmospheric pressure. 
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X-ray diffraction and Rietveld method 

X-ray diffraction (XRD) analysis and interpretation using 
the Rietveld method (Rietveld, 1969) was used to quantify 
the mineralogy of the rocks. 
The quantitative analysis was made with the General 
Structure Analysis System (GSAS), software for Rietveld 
analysis and the difference between the measured and 
the adjusted curves was less than 3% for all cases.  

X-ray Computed Microtomography 

X-ray tomography is a non-destructive method that uses 
X-rays to produce tomographic images of a scanned 
sample, allowing the structures inside the sample to be 
studied without cutting it. Thereafter, reconstructions 
algorithms are used to generate a 3D image of the 
sample from the radiographic images. 
Cubic samples with 2-mm long edges were prepared with 
a wire saw and scanned using two different systems: 
Xradia Micro XCT at University of Manchester and 
beamline I13 at Diamond Light Source (Oxford/UK).  

For all the samples, the Xradia scanner was set up to 
work at 90 keV and 111µA, the magnification was 9.8X 
and pixel size of 1.1 µm. On I13, the x-ray energy was 
monochromated to 22 keV, and 1800 projections over 
a 180° rotation were captured with an exposure time of 
6 seconds each. The pixel size was 1.125 µm. The 
samples did not exceed the field of view and the scan 
time for each sample was ~12 hour on the Xradia and 
~4 hours on I13. 
Avizo Fire 8.1 and an extension package (XSkeleton) 
were used for data filtering, segmentation and analysis. 

Local and Global Parameters from X-ray CT 

From a 3D image, it is possible to obtain global and local 
parameters. Global parameters are related to the whole 
pore space properties, such as micro- and macroporosity, 
specific surface area and tortuosity, whilst the local 
parameters are associated with properties of a single 
pore. These are mostly related to the specific properties 
of the pore, such as geometry, aspect ratio and 
roundness. The following parameters were collected: 
Specific Surface Area (S): the ratio between the total pore 
surface area and total pore volume. In this study, S 
values range from 164mm-1 (for oolitic grainstones) to 
721mm-1 (cemented grainstones). 
Dominant Pore Size (DomSize): the upper boundary of 
pore radius of which 50% of the porosity on a 3D image is 
composed. This property is determined by the equivalent 
spherical diameter of each irregular pore. In this study, 
DomSize varies from 9.2µm (cemented grainstones) to 
76.7µm (ooliticgrainstones). 
Gamma (γ):defined for 2D images as the ratio between 
the perimeter and area (PoA) for a single pore normalized 
to a circle (Anselmetti et al., 1998). In this study, we 
reformulated this parameter for 3D images, defined as the 
specific surface area of a single pore normalized to a 
sphere (Eq. 2). It describes the sphericity of the pore and 
in our data gamma varies from 1.28 to 2.14. A γ value 
close to 1 (one) indicates that the pore is spherical, and 
as this number increases, the pore becomes flattened. 
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Microporosity (φµ): the difference between gas porosity, 
measured on a core plug (φgas), and the macroporosity - 
φCT, obtained from the 3D image of the sample (Eq. 3).  

CTgas φφφµ −=                                                            (3) 

Tortuosity (τ): the ratio between the length of the path of 
the fluid inside the rock, and the straight distance 
between its end points. It was calculated by computing 
the centroid of each 2D image, and then the path length 
through the centroids and divides it by the number of 
planes multiplied by the resolution along the axis. 
Coordination number: the number of pore throats 
connected to one pore. The average coordination number 
is defined as the ratio between the total number of pore 
throats and the number of pores in the sample. In this 
work, we created and analyzed the centerline tree (Figure 
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4A), where each segment represents a pore and nodes 
represent either the pore throats (junctions) or the pore 
edge. As the software does not differentiate pore throats 
and edges, the highest possible value is 2, which is the 
isolated pore case (two nodes and one segment). 
Increasing the number of connections, coordination 
number decreases, (Figure 4).  
Although this methodology does not provide values of 
coordination number commonly reported in literature, 
which varies from 6 up to ~40 (Raoof and Hassanizadeh, 
2010; Jivkov et al., 2013), it does differentiate the 
connectivity of the pore space. For our samples, 
coordination number varies from 1.36 to 1.99. 

 
Figure 4 – (A) The skeleton of pore space (B) is the 
isolated pore case, (C) represents two connected pores, 
with coordination number of 3/2 and (D) shows three 
connected pore and coordination number of 4/3 

Prior to the pore space analysis, the image was 
segmented into pores and matrix, where the pores are 
represented by the blue color and the matrix by the black 
color (Figure 5A). All the global parameters were 
extracted from this image, whilst local parameters were 
obtained from images such as Figure 5B, where the total 
pore space was separated into individual pores, and each 
color represents a different pore. Figure 5C shows a 3D 
rendering of this pore space. 

 
Figure 5 – (A) Binary image representing the pore space 
(blue) and the matrix (black); (B) The separated pore 
space; (C) Tridimensional representation of (B) 

Kozeny’s equation – Determination of permeability 

The Kozeny equation (Eq. 4) is one of the most popular 
and fundamental correlations between permeability and 
porosity (Kozeny, 1927). It was derived from a rock model 
where the pore space is described as n capillary tubes, 
with the space between these tubes filled with a non-
porous material. Later, Mortensen et al. (1998), redefined 
this equation and introduced the Kozeny´s factor (c) and 
expressed the permeability (k) in terms of this parameter, 
porosity (φ) and specific surface area (S) - Eq. 5. The 
Kozeny factor (c) varies from 0.15 to 0.25 as the porosity 
increases from 5 to 50%. 
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Despite the reasonable adjusted coefficient (R2 = 0.668) 
obtained between kK (Kozeny’s permeability) x kmeasured. 
Figure 6, the model has a tendency to overestimate low 
(<100mD) and underestimate high (>100mD) 
permeabilities. 

Statistical Model and Multiple Linear Regressions 
(MLR) 

To improve the coefficient of determination, permeability 
(kK) was combined with global and local geometrical 
parameters of the pore space by using MLR. Equation 6 
describes the proposed model, where Pm is the measured 
property, Pe represents the estimated property, Xn 
represents global and local parameters 

nβ  are 
coefficients determined by the regression, (Eq.6). 

...22110 ++++= XXPP em ββββ                         (6) 

This study focused upon determination of how this 
statistical model fits to the experimental data, analyzing 
the adjusted coefficient of determination ( )2R  estimated 
by Eq. 7, where n is the sample size and p is the total 
number of variables in the linear model. Unlike the R2, 
increases when a new independent variable is included 
only if it improves R2 more than expected by chance, as it 
considers the degree of freedom of the dataset. 

                                       (7) 

In a MLR, sample size must be large enough to ensure 
stable model coefficients. If not, the model may not 
generalize well beyond the current sample (Brooks and 
Barcikowski, 2012). To provide minimal shrinkage of the 
coefficient of determination, the ratio between sample 
size and predictors ranges widely: 10 to 1 (Miller and 
Kunce, 1973) to 30 to 1 as stated by Pedhazur and 
Schmelkin (1991). This work was developed with just 
eleven samples. Then, all the results obtained here reflect 
just the behavior of this set of data. Brooks and 
Barcikowski (2012) reported that a study with insufficient 
sample size stands a large chance of committing type I 
error (incorrect rejection of a true null hypothesis - “false 
positive”) and II error (failure to reject a false null 
hypothesis - a “false negative”). For this reason, in 
addition to adjusted R2 determination, p-value and 
statistical power were also calculated for each MLR. A 
small p-value (<0.05) and a high statistical power (>0.8) 
indicate that there is a low probability that these errors 
were committed in the MLR. 

Results 

Petrographical and 3D image analysis (Table 2a and 2b) 
reveal that the lowest porosity sample, W2-01 (Figure 2; 
16.3%), has the lowest permeability (0.24mD). 
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Correspondingly, it has the lowest volume of 
macroporosity (1.44%), smallest dominant pore size 
(12.2µm) and highest specific surface area (721mm-1), 
and largest coordination number (1.99). Conversely, the 
sample with the highest porosity (28.89%), W1-05 (Figure 
3), has the highest permeability (602mD). Interestingly, it 
does not have the highest volume of macroporosity 
(10.61%, compared to a maximum of 11.50% in sample 
W1-02 (Figure 3)), largest dominant pore size (64.92µm, 
compared to a maximum of 76.7µm in sample W1-02), or 
lowest specific surface area (176mm-1 compared to a 
minimum of 163 mm-1 in sample W1-02). Sample W2-03 
(Figure 2) is the sample with the highest volume of micrite 
in the dataset. Consequently, it has undergone more 
compaction than other samples. It has the highest (γ) of 
all the samples (2.14), but compared to other samples 
from this well, it has the highest volume of macroporosity 
(3.01%), largest DomSize (19.31µm) lowest S (516mm-1). 
In contrast, sample W1-02 (Figure 3) has an excellent 
permeability (222mD) and the highest volume of 
macroporosity (11.5%) largest DomSize (76.7µm), and 
lowest S (163 mm-1) of the dataset. 
Qualitatively, therefore there appears to be a broad 
relationship between permeability and porosity. In 
general, as permeability increases, macroporosity, γ, and 
DomSize also increase, whilst S, AR, microporosity, 
coordination number and τ decrease (see Figures 7 to 
12; Tables 2a and 2b). Nevertheless, the dataset reveals 
anomalies, which are apparently related to complexities in 
the pore geometry induced by compactation. This sample, 
W1-02, has the lowest volume of microporosity (55.2% of 
the total pore volume) of all samples. In comparison, the 
most micritic, least well sorted sample (W2-03), Figure 2, 
is highly compacted and is not the most microporous 
sample in the dataset (84.7% of total porosity is 
microporosity, compared with 96.9% in sample W2-02), 
nor has it the highest S or smallest DomSize, it is difficult 
to constrain the key control on permeability.  
To improve permeability estimation, a MLR was used to 
examine the link between permeability, porosity and 3D 
DIA parameters obtained from X-ray tomography. The 
following steps incorporated a single 3D DIA parameter at 
a time as a linear combination to the estimated property. 
All arrangements were tested, but just the higher values 
of adjusted R2 are shown in Table 1, where the p-value 
and statistical power are also presented.  
Six predictors were used to estimate permeability: gamma 
(γ), DomSize, tortuosity (τ). Specific surface area (S), total 
porosity and its micro and macro fractions are implicit in 
this adjustment. A very strong correlation is observed in 
this MLR, the adjusted R2 increases from 0.668 to 0.916 
just by adding the dominant pore size (DomSize) to the 
model, as shown in Figure 13. By adding (γ), (φµ), (AR), 
(τ) and (φCT), a slightly improvement on to 0.948 is 
observed. For all cases, p-value is always below 0.05 and 
the statistical power, for most of the cases, is greater than 
0.8. This parameter is strongly related to the adjusted R2, 

showing values not desirable for < 0.88. 
Conclusions 

This study successfully presents the quantification of local 
and global pore space parameters of carbonate rocks 

from 3D images obtained by X-ray tomography and how 
to incorporate them to a statistical model. Also, their 
influence on permeability was evaluated and the 
controlling parameters were determined. Our results 
show: (a) there is not a single parameter that controls the 
measured properties; multiple controls must be operating 
and these cannot be fully determined by geological 
observation alone; (b) effective porosity and DomSize are 
the major controlling factors of permeability, consistent 
with the fact that the flow mainly follows large pores 
during fluid transport. (c) the permeability estimated from 
Kozeny’s equations combined with DomSize describes 
more than 91% of the measured permeability, an 
impressive adjustment as permeability prediction is still 
one of the greatest challenges in petrophysical analysis. 
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Table 1 - Adjustes coefficient of determination 
between measurement and stimated permeability 
Parameters used to 
predict permeability 

Adjusted 
R2 

p-value Statistical 
Power 

kK 0.668 0.0013 0.66 

kK + DomSize 0.916 0.0001 0.98 

kK + DomSize + γ + 
φµ + AR + τ + φCT 

0.948 0.010 0.99 

 
 
 
 
Table 2a - Local and global parameters obtained from 
3D images  
Samples Macro 

φ  (%) 
Aspect 

Ratio (AR) 

S 

(mm-1) 

γ τ  

W1-01 8.26 0.546 188 1.77 2.88 
W1-02 11.52 0.544 163 1.79 2.59 
W1-03 2.59 0.575 218 1.54 7.89 
W1-04 4.55 0.575 189 1.65 3.47 
W1-05 10.61 0.574 176 1.71 2.97 
W1-06 6.49 0.575 254 1.67 2.94 
W1-07 4.21 0.577 235 1.58 4.02 

Table 2b  - Local and global parameters obtained 
from 3D images 
Samples DomSize 

(µm) 

Coord. 

number 

Microφ  

(%) 

Micropores 
% 

W1-01 73.69 1.85 14.77 64.13 
W1-02 76.70 1.80 14.19 55.19 
W1-03 41.11 1.93 19.48 88.26 
W1-04 53.22 1.57 17.72 79.57 
W1-05 64.92 1.39 17.90 62.78 
W1-06 46.66 1.67 22.40 77.57 
W1-07 41.89 1.36 18.67 81.60 
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Figure 6 – kK x kmeasured. Cemented grainstone are 
represented by circles and oolitic grainstone by squares 
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Figure 7 – Cross-plot shows a trend with increase in 
values of Kmeasured and macroporosity



PERMEABILITY CONTROLLING FACTORS OF CARBONATES 


Fourteenth International Congress of the Brazilian Geophysical Society 

6 

0.54 0.55 0.56 0.57 0.58 0.59

0

100

200

300

400

500

600

700

	
  

	
  

R 2	
  = 	
  0.009

k m
ea

su
re
d	
  
(m

D
)

A s pec t	
  R a tio

Figure 8 – Cross-plot shows a trend with a slightly 
decrease in values of Kmeasured and aspect ratio (AR)
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increase in values of Kmeasured and gamma (γ)
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Figure 11 - Cross-plot shows a trend with an increase in 
values of Kmeasured verus DomSize 
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Figure 12 – Cross-plot shows a trend with a 
slightly decrease in values of Kmeasured and 
microporosity 

 
Figure 13 – 3D crossplot of the relationship between 
DomSize, kmeasured, kK. Observe the importance of the 
dominant pore size as factor controlling permeability 
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