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Abstract

The qP and qS-wave eikonal equations derived from
the VTI wave equation show that in the pseudo-
acoustic approximation, their dispersion relations
degenerate into a single one. Therefore, when
using this dispersion relation for wave simulation, for
instance by means of finite-difference approximations,
both events are generated. To avoid the occurrence
of the pseudo-S wave, the qP-wave dispersion relation
alone needs to be approximated. This can be done
with or without the pseudo-acoustic approximation.
A Padé approximation with slightly unconventional
numbers for the Padé coefficients led to the best
approximation. An implementation of a low-rank
approximation to this equation demonstrates that this
can provide high-accuracy wavefields even in strongly
anisotropic inhomogeneous media.

Introduction

Reverse time migration using anisotropic velocity models
has become the standard methodology for seismic imaging
in complex exploration settings. Although anisotropy is
essentially an elastic property, migration with elastic wave
equation is currently unfeasible. Even if one is able to
successfully estimate elastic migration velocity models, the
computational cost to solve elastic wave equation and
the lack of efficient algorithms to compute wave mode
separation are major obstacles to elastic imaging. In
this scenario, pseudo-acoustic approximation (Alkhalifah,
1998, 2000) is a very cost-effective approach to anisotropic
RTM. The pseudo-acoustic wave equation, proposed to
model the evolution of qP modes, is derived under the
assumption that shear velocity is zero along the symmetry
axis.

However, finite difference implementations of pseudo-
acoustic wave equation can be plagued by physical
instability and undesirable S-wave modes even in the
weakly anisotropic regime. Several strategies have been
proposed to overcome these problems. Stability of
space-time FD implementations of the pseudo-acoustic
wave equation can be only be assured if the Thomsen
parameters satisfy the constraint ε ≥ δ , which is not always
valid for shales (Thomsen, 1986). Fletcher et al. (2009) and
Fowler et al. (2010) showed that a stable approximation
for qP modes in VTI media can be derived if one does
not assume the shear velocity along the symmetry axis to

be zero. However, their proposed stable coupled system
of second-order differential equations still can produce
undesirable S-wave modes.

The mitigation of the S-wave in FD implementations of
the pseudo-acoustic approximation has been an area of
active research since the original work of Alkhalifah (1998).
For example, Alkhalifah (2003) indicated that if the source
is in an isotropic region the S modes are not generated,
although it still can be produced at interfaces with sharp
contrast. The work of Grechka et al. (2004) indicates that
the instability of pseudo-acoustic wave-equation is due to
the coupling of the S mode to the qP mode. The S mode is
not stable when ε ≥ δ .

For this reason, one solution to obtain a stable qP wave
equation is to factor out these spurious modes from the
pseudo-acoustic wave equation. The work of Klı́e and
Toro (2001) presents one such approximation for pure qP
wave-equation under the assumption of weak anisotropy.
Exact factorization results in a pseudo-differential operator
in the mixed space-wavenumber domain (Liu et al.,
2009). Differential equations in space-time for the pure
qP mode can be derived through approximations to the
exact pseudo-differential operator for qP evolution. Liu
et al. (2009) proposed an algorithm to implement the
exact factorization of the pseudo-acoustic wave equation
in the mixed space-wavenumber domain. Pestana et al.
(2012) derive an alternative approximation for the exact
factorization which is valid for weak anisotropy and
can be implemented using finite difference in time and
pseudo-spectral method in space. More sophisticated
approximations of this factorization can be found in Du
et al. (2014). Most recently, the exact factorization of
the pseudo-acoustic wave equation in the mixed space-
wavenumber domain has been implemented using the low-
rank approximation (Sergey Fomel et al., 2013; Song and
Alkhalifah, 2013; Wu and Alkhalifah, 2014).

In this work, we derive a new pure qP-mode approximation
free of physical instability and S modes and valid even for
strong anisotropic media. Numerical experiments in strong
anisotropic media with positive and negative anellipticity
indicate the accuracy and stability of the implementation
and demonstrate that the S modes are eliminated from
the proposed qP equation for weak and strong anisotropic
models. We also present simulations in a smoothly
heterogeneous medium.

Theory

Elastic wave propagation in a VTI medium

We start at the approximate elastic wave equation for VTI
media with small δ , as specified by Bloot et al. (2013).
Still according to Bloot et al. (2013), substitution of a

zero-order ray ansatz (Červený, 1985; Červený, V., 2001)
with U denoting a vectorial amplitude and T denoting the
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traveltime, into the VTI wave equation without a source
term yields the eigenvalue problem

ΓU= U, (1)

where the eigenvalues are all Λ = 1. The Christoffel matrix
Γ has the elements

Γ11 = (α2−β 2)p21+β 2‖p‖2+2εα2p21+2γβ 2p22,

Γ22 = (α2−β 2)p22+β 2‖p‖2+2εα2p22+2γβ 2p21,

Γ33 = (α2−β 2)p23+β 2‖p‖2,
Γ21 = Γ12 = (α2−β 2)p1p2+2(εα2− γβ 2)p1p2,

Γ31 = Γ13 = (α2−β 2)p1p3+δα2p1p3,

Γ32 = Γ23 = (α2−β 2)p2p3+δα2p2p3. (2)

where the slowness vector p is defined as

p= ∇T = (p1, p2, p3) . (3)

Moreover,

α =

√
λ +2µ

ρ
and β =

√
µ

ρ
(4)

denote the vertical P and S wave velocities, and ε and δ
are the Thomsen parameters.

Bloot et al. (2013) calculated three eigenvalues Λ of Γ
exactly to obtain

Λ1,2 =
1

2

(
(α2+β 2)‖p‖2+2εα2‖p̂‖2±

√
(α2−β 2)2‖p‖4+4Π

)

(5)
and

Λ3 = β 2‖p‖2+2γβ 2‖p̂‖2, (6)

where the horizontal slowness vector p̂ is given by

p̂= ∇̂T = (p1, p2,0) , (7)

and where, up to first order in δ ,

Π = α2

[
(α2−β 2)

(
ε‖p‖2+2(δ − ε)p23

)
+α2ε2‖p̂‖2

]
‖p̂‖2.

(8)

The condition that the eigenvalues must be equal to one in
order to correspond to a solution to equation (1) translates
thus into

Λ1,2 = A+±
√
A2
−−B= 1 (9)

and
Λ3 =C = 1 (10)

where

A± =
1

2

(
(α2±β 2)‖p‖2+2εα2‖p̂‖2

)
(11)

B = 2α2(α2−β 2)(ε −δ )p23‖p̂‖2 (12)

C = β 2

(
‖p‖2+2γ‖p̂‖2

)
(13)

If higher orders in δ are taken into account, a term
α4p2

3
‖p̂‖2δ 2 must be subtracted from B in equation (12).

Equation (9) with a positive sign is the qP eikonal
equation that describes the kinematic properties of qP-
wave propagation, and with a negative sign it is the qSV
eikonal equation. Correspondingly, equation (10) is the
qSH eikonal equation.

Pseudo-acoustic approximation

The pseudo-acoustic approximation (Alkhalifah, 1998,
2000) consists of setting the vertical S-wave velocity to zero
in the equations governing wave propagation. With β = 0,
equations (9) and (10) become

Λ1,2 = a±
√

a2−b= 1 , (14)

Λ3 = 0 , (15)

where now

a =
α2

2

(
‖p‖2+2ε‖p̂‖2

)
, (16)

b = 2α4(ε −δ )p23‖p̂‖2 . (17)

For higher orders in δ , again the term α4p2
3
‖p̂‖2δ 2 must be

subtracted from b in equation (17).

Equation (15) implies that qSH-wave propagation in
impossible in a pseudo-acoustic VTI medium. At first view,
the situation of qP and qSV-wave propagation is less clear.
A simple analysis of equation (14) reveals that it can be
rewritten as

±
√
a2−b = 1−a

a2−b = 1−2a+a2

or 2a−b = 1 . (18)

Replacing ‖p̂‖2 → k2x

ω2
, p23 → k2z

ω2
, α2 → v2n

1+2δ
,

ε −δ

1+2δ
→

η , where kx and kz denote the horizontal and vertical
wavenumbers and vn is the NMO velocity, we arrive at

k2z =
v2n

α2

(
ω2

v2n
− ω2 k2x

ω2−2ηv2n k
2
x

)
, (19)

which is exactly the pseudo-acoustic qP dispersion relation
of Alkhalifah (2000). Since in the analysis leading to
equation (18), we have taken into account both signs
in front of the square root, this equation is actually a
dispersion relation for both, qP and qSV waves.

Pseudo-acoustic qP and qSV degeneration

Pseudo-acoustic qP and qSV waves degenerate into a
single arrival, if

±
√
a2−b= 1−a= 0 . (20)

Equation (20) immediately implies that a= b= 1, i.e.,

a =
α2

2

(
(1+2ε)‖p̂‖2+ p23

)
= 1 , (21)

b = 2α4(ε −δ )p23‖p̂‖2 = 1 . (22)

These two equations define the propagation directions in
which pseudo-acoustic qP and qSV waves travel with the
same velocity. Solving equation (21) for p2

3
and substituting

the resulting expression in equation (22) results in

(1+2ε)α4‖p̂‖4−2α2‖p̂‖2+1/(2ε −2δ ) = 0 , (23)

which can be solved for the horizontal slowness to yield

‖p̂‖2 = 1

α2

1±
√
− 1+2δ

2(ε−δ )

1+2ε
. (24)
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Note, however, that equations (21) and (22) cannot be
satisfied simultaneously for an arbitrary VTI medium. For
equation (22) to be fulfilled, we need ε − δ > 0. For
equation (24) to represent a real propagation direction,
i.e., describing a nonevanescent wave, the term under the
square root must be nonnegative. This condition translates
to the requirement that ε−δ < 0, unless δ =−1/2. Thus, as
already observed by Grechka et al. (2004), qP-qSV wave
degeneration is possible only in media with δ =−1/2. Note
that the same analysis carried out up to second order in δ
yields for this condition δ = 1−

√
2 ≈ −0.41, allowing this

degeneration to occur in more realistic media.

In a medium satisfying this condition, equation (24)
reduces to

α2‖p̂‖2 = 1

1+2ε
. (25)

The vertical slowness component is then given by
substituting equation (25) into equation (21), which yields

α2p23 = 2− (1+2ε)α2‖p̂‖2 = 1 . (26)

Equations (25) and (26) correspond to the propagation
direction (see again Grechka et al., 2004)

θ = arctan
p1

p3
=±arctan

1√
1+2ε

=±1

2
arccos

1

1+ ε
. (27)

Separate pseudo-acoustic qP and qSV propagation

From the above analysis, it is clear that to propagate qP
waves or qSV waves only, we must not rely on the common
dispersion relation (19). The individual eikonal equations

qP eikonal equation: +
√
a2−b = 1−a (28)

qSV eikonal equation: −
√
a2−b = 1−a (29)

must be considered.

The positive sign in front of the square root in the qP eikonal
equation (28) shows that this equation can only be fulfilled
if 1− a > 0, i.e., a < 1. Moreover, since we are interest
in describing transient waves, we need the argument of
the square-root to be positive, which translates into the
condition b < a2. Correspondingly, we see that the qSV
eikonal equation (29) requires a> 1 and b< a2. Moreover,
equation (29) cannot be fulfilled if b < 0, because in that
case the left-hand side −

√
a2−b<−a, while the right-hand

side 1− a > −a. Thus, for transient pseudo-acoustic qSV-
wave propagation to be possible, we need 0< b< a2. The
condition b> 0 directly implies ε −δ > 0. Thus, the pseudo-
acoustic qSV wave can only be observed in VTI media with
ε > δ , i.e., η > 0.

This analysis demonstrates that the domains for qP and
qSV waves are separated by the surface a = 1, which
is an elliptical slowness surface with horizontal velocity
α
√
(1+2ε)/2 and vertical velocity α

√
1/2.

Approximations to the pseudo-acoustic qP eikonal equation

Because we are interested in describing the propagation
of qP waves only, we need to transform equation (28) into
a differential equation, which can then be solved, e.g., by
means of a finite-difference approximation. However, since
equation (28) contains a square root, it cannot be used
directly to derive an equivalent wave equation. Therefore,
we study a few possible approximations to the square root.

Near vertical propagation

The first idea is to approximate square root for near-vertical
propagation, i.e., for ‖p̂‖2 ≪ p2

3
. Writing the square root in

equation (28) in terms of ‖p̂‖2/p2
3
, we find up to first order

√(
α2

2
(‖p‖2+2ε‖p̂‖2)

)2

−2α4(ε −δ )p2
3
‖p̂‖2

≈ α2

2

(
(1−2ε +4δ )‖p̂‖2+ p23

)
(‖p̂‖2 ≪ p23) . (30)

Substitution back in equation (28) yields an approximate
elliptical eikonal equation

v2n‖p̂‖2+α2p23 = 1 . (31)

Alternative approximation

Another promising idea is to approximate square root for
b ≪ a2, given that it has to satisfy b < a2 anyway for the
square root to remain real. We find

√
a2−b = a

√
1− b

a2
≈ a

(
1− b

2a2

)

= a− b

2a
(b≪ a2) (32)

This leads to the approximate eikonal equation

a− b

2a
≈ 1−a (33)

or 2a(2a−1) = b . (34)

The corresponding dispersion relation has been previously
derived, transformed into a differential equation and
numerically tested through an FD implementation by Klı́e
and Toro (2001).

Non-acoustic qP eikonal equation

The structure of the original eikonal equations (9) is almost
identical to its pseudo-acoustic version (14). Therefore, the
same approximation that lead to Klı́e and Toro’s equation
above can also be directly applied to the former. For B ≪
A2
−, we find the approximate square root

√
A2
−−B≈ A−− B

2A−
, (35)

which leads to the approximate eikonal equation

A++A−− B

2A−
≈ 1 , (36)

or, with A++A− = 2a (compare equations (11) and (16)),

2A−(2a−1) = B . (37)

The corresponding dispersion relation has been derived
in a different way by Pestana et al. (2012), based on a
factorization of the dispersion relation by Du et al. (2008).

Equation (37) has some properties that are worthwhile to
note: It

• Reduces to Klı́e and Toro’s equation for β = 0;
• Allows stable implementation for η < 0;
• Possesses only a weak dependence on β .
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Figure 1: Pseudo-acoustic qP dispersion relation for Taylor
Sandstone. The dispersion relation becomes imaginary
at the horizontal P-wave velocity, but turns real again for
larger kx.

The latter observation is important because it means that
the approximation can be expected to work even if using a
constant ratio between the vertical P and S-wave velocities,
which helps to reduce the number of required parameters
to the same number used in the equation of Klı́e and Toro
(2001).

Strong-anisotropy approximation

For values of B close to A2
−, this approximation may not

have sufficient quality. A better approximation of the
square root can be achieved by means of a fractional Padé
approximation, i.e.,

A−

√
1− B

A2
−

≈ A−


1−

q1
B
A2
−

1−q2
B
A2
−


 , (38)

where q1 and q2 are the Padé coefficients. The
corresponding approximate eikonal equation reads

A++A−−
q1

B
A−

1−q2
B
A2
−

≈ 1 (39)

or, equivalently,

(A2
−−q2B)(2a−1) = q1A−B . (40)

Numerical Examples

To better understand the S-wave modes in the pseudo-
acoustic approximation and to demonstrated the quality
of the approximations obtained from the above analysis,
we have calculated a number of slowness surfaces
and modeled wave propagation for a set of differently
anisotropic media.

Pseudo-acoustic qP dispersion relation

The S-wave modes in the pseudo-acoustic approximation
are best understood from an analysis of the pseudo-
acoustic qP dispersion relation. Figure 1 shows this
relation for the parameters of Taylor Sandstone (Thomsen,
1986): α = 3.368 km/s, β = 1.829 km/s, ε = 0.110, δ =
−0.035, i.e., η > 0 for this material.

We observe in Figure 1 that the dispersion relation
becomes imaginary at the horizontal P-wave velocity, but
turns real again for larger kx (Amazonas et al., 2010).
These larger wavenumbers correspond to a slower wave
propagation, as we can see in Figure 2. Also shown in this
Figure is the surface a = 1, which separates the domains
for qP and qSV-wave propagation.
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Figure 2: Slowness and phase-velocity surfaces for Taylor
Sandstone. The domains for qP and qSV propagation are
separated by the surface a= 1 (red line).
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Figure 3: Pseudo-acoustic slowness surface (magenta
line) and its near-vertical approximation (dashed blue
line) for (a) Taylor Sandstone; (b) Mesaverde Laminated
Siltstone; (c) dry Green River Shale; (d) Biotite Crystal.

qP relation for near-vertical propagation

Our first approximation for the pure qP dispersion relation
is equation (31) for near-vertical propagation. Figure 3
shows this approximation for four different materials of
Thomsen (1986) with very different anisotropies. These
are Taylor Sandstone (α = 3.368 km/s, β = 1.829 km/s,
ε = 0.110, δ = −0.035), Mesaverde Laminate Siltstone
(α = 4.449 km/s, β = 2.585 km/s, ε = 0.091, δ = 0.565),
dry Green River Shale (α = 3.292 km/s; β = 1.768 km/s,
ε = 0.195, δ =−0.220), and Biotite Crystal (α = 4.054 km/s,
β = 1.341 km/s, ε = 1.222, δ = −0.388). We see that in all
cases the approximation correctly describes the slowness
surface for propagation directions up to about 25-30◦.

Small b approximation

Better approximation is achieved for all of these materials
with the small b approximation of equation (34), previously
derived by Klı́e and Toro (2001). A comparison
to the true pseudo-acoustic slowness surface for the
four cited materials is shown in Figure 4. We see
that for Taylor Sandstone (Figure 4a) and Mesaverde
Laminated Siltstone (Figure 4b) the small b approximation
is virtually indistinguishable from the pseudo-acoustic
slowness surface. Even for the rather strongly anisotropic
dry Green River Shale (Figure 4c), the differences in
the diagonal directions are quite small. Only for the
extremely anisotropic Biotite Crystal (Figure 4d), significant
differences are visible.
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Figure 4: Pseudo-acoustic slowness surface (magenta
line) and its small b approximation (dashed blue line) for
(a) Taylor Sandstone; (b) Mesaverde Laminated Siltstone;
(c) dry Green River Shale; (d) Biotite Crystal.
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Figure 5: True qP slowness surface (red line) and its non-
acoustic approximation (dashed blue line) for (a) Taylor
Sandstone; (b) Mesaverde Laminated Siltstone; (c) dry
Green River Shale; (d) Biotite Crystal.

Non-acoustic approximations

Next, we analyse the quality of the non-acoustic
approximations of equations (37) and (40). Figure 5
compares the approximation of equation (37), previously
derived by Pestana et al. (2012), to the true qP slowness
surface. The quality of the approximation is practically
identical to the one of equation (34) of Klı́e and Toro (2001)
with respect to the pseudo-acoustic slowness surface.

Figure 6 demonstrates the improved quality of the
strong-anisotropy approximation. Even for the Biotite
Crystal (Figure 6d), no deviation between the true and
approximated slowness surfaces is visible. Here, we
used the theoretical value of q1 = 1/2 for the first Padé
coefficient, but chose the second one q2 to be represented
in dependence on ε and δ according to the function q2 =
3.75+2ε−3δ/10 instead of the conventional value q2 = 1/4.

Figure 7 shows the relative error of the slowness as a
function of the propagation angle for the chosen materials
for the theoretical and optimized value of q2. We see that
the error is visibly reduced when using the latter.

Propagation snapshots

Encouraged by these very good approximations of the
slowness surface, we implemented a low-rank scheme
to simulate numerical wave propagation by means of
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Figure 6: True qP slowness surface (red line) and its
non-acoustic Padé approximation (dashed blue line) for (a)
Taylor Sandstone; (b) Mesaverde Laminated Siltstone; (c)
dry Green River Shale; (d) Biotite Crystal.

(a)

−200 −100 0 100 200

−0.02

−0.01

0

0.01

0.02

θ (degree)

R
e
la

ti
v
e
 e

rr
o
r 

(%
)

 

 
q

2
=0.25

q
2
=0.274

(b)

−200 −100 0 100 200

−0.2

−0.1

0

0.1

0.2

θ (degree)

R
e

la
ti
v
e

 e
rr

o
r 

(%
)

 

 

q
2
=0.25

q
2
=0.206

(c)

−200 −100 0 100 200

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

θ (degree)

R
e
la

ti
v
e
 e

rr
o
r 

(%
)

 

 
q

2
=0.25

q
2
=0.308

(d)

−200 −100 0 100 200
−6

−4

−2

0

2

4

6

θ (degree)

R
e

la
ti
v
e

 e
rr

o
r 

(%
)

 

 
q

2
=0.25

q
2
=0.384

Figure 7: Error of non-acoustic slowness surface for
theoretical (blue line) and optimized value of q2 (green
line) for (a) Taylor Sandstone; (b) Mesaverde Laminated
Siltstone; (c) dry Green River Shale; (d) Biotite Crystal.
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Figure 8: Snapshots of qP wave in a homogeneous dry
Green River Shale. (a) Full tension wavefield. (b) Pseudo-
acoustic wavefield. (c) Non-acoustic strong-anisotropy
approximation.

these equations. Figure 8 compares the snapshots in
a homogeneous dry Green River Shale and Figure 9 in
Biotite Crystal. In both figures, part (a) shows the true
wavefield with qP and qSV waves, part (b) shows the
pseudo-acoustic wavefield with the approximate qP wave
and an incorrect qSV wave, and part (c) shows the non-
acoustic Padé approximation to the pure qP wave. We
recognize that even for these media with very strong
anisotropy, the non-acoustic Padé approximation provides
a very good approximation of the qP wavefront, while
eliminating the S mode entirely.

Inhomogeneous medium

Our final test simulated qP wave propagation in an
inhomogeneous anisotropic TTI medium. The medium
parameters are: Vertical constant gradient in α from
2.5 km/s at the top of the model to 4.5 m/s at the
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Figure 9: Snapshots of qP wave in a homogeneous
Biotite Crystal. (a) Full tension wavefield. (b) Pseudo-
acoustic wavefield. (c) Non-acoustic strong-anisotropy
approximation.
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Figure 10: Snapshots of qP wave in an inhomogeneous
anisotropic TTI model. (a) True qP wavefield. (b) Non-
acoustic strong-anisotropy approximation.

bottom, homogeneous ε = 0.195 and δ = −0.220 (taken
from the dry Green River Shale), and symmetry axis
tilted by an angle of 30◦ from the vertical. Figure 10
compares the result of low-rank approximate modeling
of the exact qP dispersion relation (Figure 10a) with the
result of approximate equation (40) (Figure 10b). Even
for this rather strong anisotropy and velocity gradient, we
observe almost perfect coincidence between the true and
approximated wavefields.

Conclusions

We have studied elastic wave propagation in a VTI
medium in order to better understand the coupling of
qP and qSV wave propagation in the pseudo-acoustic
approximation. We have found that the pseudo-acoustic
qP dispersion relation of Alkhalifah (2000) is actually a
coupled equation that describes both qP and a qSV
waves. The equation can be uncoupled if the individual
eikonal equations are considered. Since these equations
contain square roots, they cannot be directly converted
into differential approximations. Even their implementation
by means of a low-rank approximation might be impaired
in heterogeneous and strongly anisotropic media, as
indicated by Wu and Alkhalifah (2014).

Therefore, we have discussed several approximations
to the square root and found that some of them have
already been derived in the literature by decoupling
Alkhalifah’s dispersion relation. A Padé approximation with
slightly unconventional numbers for the Padé coefficients
led to the best approximation. An implementation of
a low-rank approximation to this equation demonstrated
that is can provide high-accuracy wavefields even in
strongly anisotropic inhomogeneous media. Using the new
equation, we hope to explore in the near future its potential
to provide an approximation that factors heterogeneity and
anisotropy even in strongly anisotropic media in the fashion
used by Liu et al. (2009) and Pestana et al. (2012) for weak
anisotropy.
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Červený, V., 1985, The application of ray tracing
to the numerical modeling of seismic wavefields in
complex structures, part A: Theory, in Seismic Shear
Waves: Geophysical Press, volume 15 of Handbook of
Geophysical Exploration, Section I: Seismic, 1–124.
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