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Abstract

In this paper we propose a strategy to estimate
the impulse responses from a local target in the
subsurface from surface seismic data, as an iterative
sparse inversion approach in two steps. The first step
is the process to estimate the up- and downgoing
wavefields at a specific level nearby the target through
Joint Migration Inversion. The second step is an
iterative sparse inversion approach, which estimates
the impulse responses from the target. The main
feature of this strategy is that all multiple scattering
in the data is used to enhance the illumination at
target level. Currently, the first step has not yet been
fully tested and the results shown are obtained only
from the second step, using forward modeling and
wavefield decomposition to get the up- and downgoing
wavefields at the level nearby the target. The numerical
tests show that the iterative sparse inversion approach
does not require dense sources sampling to estimate
the impulse responses from a target below a complex
overburden, because of all the extra illumination via
multiples.

Introduction

When imaging a target below a complex overburden,
the complex propagation and multiple scattering effects
complicate the interpretation and characterization of the
target (Thorbecke et al., 2004). A good strategy is to first
deal with the overburden effects, followed by migration or
inversion just in the desired target (local-schemes) such as
JMI-res (Berkhout, 2013) or target-oriented full waveform
inversion (Staal et al., 2010; Gisolf and van den Berg,
2010; Haffinger et al., 2012). In exploration seismology
these local-schemes are important tools for characterizing
or monitoring the reservoir.

One of the main challenges for local-schemes is to get the
dataset only containing information from the target area in
the subsurface below a complex overburden. This process
to derive the local response from the target area, where
sources and receivers are projected on to a level just above
this area, is usually called redatuming.

There are two main methodologies for this redatuming
process. The first one is model-driven datuming, where the

traveltimes from sources (or receivers) to the chosen datum
level in the subsurface are computed from a prior velocity
model and used as time shifts in a Kirchhoff-type integral
(Berryhil, 1979, 1984, 1986; Schneider, Jr. et al., 1995;
Liu and Xu, 2011). These methods have the drawbacks
that they can exhibit some extrapolation artifacts from
upward or downward continuation of the wavefields and
they are velocity dependent, while estimating a correct
velocity model in a complex geological setting is difficult.
Another drawback is that they usually are not suitable to
correct for complex propagation paths including multiple
scattering and transmission effects.

The second redatuming methodology comprises the data-
driven methods based on cross-correlation/deconvolution
(Wapenaar et al., 2004; Wapenaar, 2004; Wapenaar and
Fokkema, 2006; Bakulin and Calvert, 2006; Vasconcelos
and Snieder, 2008a,b; Bitri et al., 2011; Soni et al., 2012b;
van der Neut and Herrmann, 2013; Wapenaar et al.,
2013). These methods only use information from the
data itself for redatuming, meaning that these methods are
velocity independent. However, they are very dependent
on the geometry of acquisition, because they requires
dense source and dense receiver sampling (Wapenaar
and Fokkema, 2006). In principle, the methods based on
deconvolution can be effective in removing the spurious
events from the estimated target impulse responses, as
pointed out by van der Neut (2012).

Here, we propose an approach to estimate the impulse
responses for P- and S-wavefields that include every
possible wave conversion from a target in two steps,
where the velocity model estimation is incorporated and
the sampling requirements are less strict. Moreover, all
multiple scattering and transmission effects are taken into
account, where multiples can help to provide additional
angles of illumination at target level. The first step is
estimating the up- and downgoing wavefields generated by
sources at surface at a desired level in the subsurface with
Joint Migration Inversion (JMI) (Berkhout, 2012, 2014b)
for P- and S-wavefields. In the JMI approach, at every
depth level in the subsurface the up- and downgoing
wavefields are estimated (with surface-related and internal
multiples), together with the velocity model and the
image. The second step is to apply an iterative sparse
inversion approach using the up/downgoing wavefields
at target level to estimate the impulse responses from
the target for both types of wavefields. In this second
step, each iteration is a multidimensional deconvolution,
similar the acoustic scheme formulated by van der Neut
and Herrmann (2013). With this scheme, we expect
to redatuming elastic reflection dataset a straightforward
and convenient way and overcome spurious events in the
elastic impulse responses.
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In this study, the JMI process has not been tested yet and
the results shown in this paper, are obtained only from
the second step, using modeled stressfields and particle
velocities at target level followed by an elastic wavefield
decomposition to get the up- and downgoing wavefields
at a level nearby our target. A similar formulation for
the acoustic case, for this second step, has already been
investigated by Soni et al. (2012b), for VSP data and
van der Neut and Herrmann (2013) for surface data.
However, here we will show for the elastic case through
numerical examples, that by including all multiples in the
wavefields that are used for the deconvolution process, we
can relax the source sampling to estimate reliable impulse
responses from a target below a complex overburden.

Sparse inversion scheme for converted waves

Using the operator notation in the temporal frequency
domain as given in Berkhout (1982), the discrete wavefield
for P- and S-waves can be described by the following four
monochromatic expressions (Berkhout, 2014a):

P(ζ )+
j (z−m ;z0)=W(ζ ζ )+(z−m ,z0)S+

j (z0)

+
m−1

∑
n=0

W(ζ ζ )+(z−m ,z
+
n )δS(ζ )+

j (z+n ;z0), (1)

with m = 1,2, ...,M and

P(ζ )−
j (z+m ;z0)=W(ζ ζ )−(z+m ,zM)P(ζ )−

j (zM ;z0)

+
M

∑
n=m+1

W(ζ ζ )−(z+m ,z
−
n )δS(ζ )−

j (z−n ;z0), (2)

with m = 0,1, ...,M− 1 and the superscript ζ indicates P-
waves for ζ = p and S-waves for ζ = s. Here z±m represents
the mth depth level in the subsurface where the superscripts
+ and - indicate underside and upper side at any depth
level, respectively, M indicates the number of depth levels
on the grid, the elements of vector S+

j (z0) represent the
source array with identification label j at the surface z0.
The matrices W(ζ ζ )±(z∓m ,z

∓
n ) represent the downward (with

superscript +) and upward (with superscript -) propagation
operator between depth levels zm and zn for P- and S-
waves. In equations 1 and 2, the elements of vectors
P(ζ )±

j (z∓m ;z0), i.e P(ζ )±
i j (z∓m ;z0), represent the down- (with

superscript +) and upgoing (with superscript -) wavefields
incident to gridpoint i at depth level z∓m that were generated
by source array j at depth level z0 for both type of
wavefields. The secondary source vectors δS(ζ )±

j (z±n ,z0)

are including the transmission and reflection processes at
depth level z±n , which are given by a linear combination of
PP-, PS-, SP- and SS-wavefields coming from of up- and
downgoing incident wavefields at z±n (Berkhout, 2014a).
These secondary source vectors are given by:

δS(ζ )+
j (z+m ;z0)=∑

i
R(ζ η)∩

i (z+m ;z+m)P
(η)−
i j (z+m ;z0)δη p+s−ζ

+∑
i

R(ζ ζ )∩
i (z+m ;z+m)P

(ζ )−
i j (z+m ;z0)

+∑
i

δT(ζ η)+
i (z+m ;z−m)P

(η)+
i j (z−m ;z0)δη p+s−ζ

+∑
i

δT(ζ ζ )+
i (z+m ;z−m)P

(ζ )+
i j (z−m ;z0) (3)

and

δS(ζ )−
j (z−m ;z0)=∑

i
R(ζ η)∪

i (z−m ;z−m)P
(η)+
i j (z−m ;z0)δη p+s−ζ

+∑
i

R(ζ ζ )∪
i (z−m ;z−m)P

(ζ )+
i j (z−m ;z0)

+∑
i

δT(ζ η)−
i (z−m ;z+m)P

(η)−
i j (z+m ;z0)δη p+s−ζ

+∑
i

δT(ζ ζ )−
i (z−m ;z+m)P

(ζ )−
i j (z+m ;z0). (4)

Where δη p+s−ζ is the Kronecker delta, the vectors
R∩i (z

+
m ;z+m) and R∪i (z

−
m ;z−m) represent the angle-dependent

reflection operators at level zm for all type of wavefields
(R(pp)

i , R(ss)
i , R(sp)

i and R(ps)
i ). The operator R∩i (z

+
m ;z+m)

transforms up- into downgoing wavefield and R∪i (z
−
m ;z−m)

transforms down- into upgoing wavefield. The vectors
δT−i (z

−
m ;z+m) and δT+

i (z
+
m ;z−m) represent the angle-

dependent transmission operators at level zm for up-
dan downgoing wavefields, respectively for all types of
wavefields (δT(pp)

i , δT(ss)
i , δT(sp)

i and δT(ps)
i ). Note that

the above expressions are including every possible wave
conversion.

At each depth level zm we can also link the down- and
upgoing wavefields from equation 2 as follows:

P(ζ )−
k j (z+m ;z0) = ∑

i
X (ζ p)

ki (z+m ,z
+
m)δS(p)+

i j (z+m ;z0)

+ ∑
i

X (ζ s)
ki (z+m ,z

+
m)δS(s)+i j (z+m ;z0), (5)

where X (ζ γ)
ki (z+m ,z

+
m) represents the impulse response from

an area below depth level z+m , generated by downgoing P-
and S-wavefields at gridpoint i and observed at gridpoint k
at depth level z+m for P- and S-wavefields, in the frequency
domain. Note that in equation 5, are used all kinds of
scattered wavefields (surface-related and internal multiples
) and every posible conversion (PS and SP) wavefields that
are observed at gridpoint i as effective source wavefield
for obtaining the complete upgoing wavefield P(ζ )−

k j (z+m ;z0).
With this in mind, it is interesting to realize that the more
complex the overburden above level zm, the richer the
illumination will be for the area below this level.

Assuming that we have the up- and downgoing wavefields
at a target level zd , a way to estimate the impulse responses
at that level is to estimate the inverse of the equation 5
(van Groenestijn and Verschuur, 2008, 2009, 2010; Soni
et al., 2012b; van der Neut and Herrmann, 2013). We
use an iterative solution to reverse this equation based in
the least-squares inversion method. Our iterative inversion
scheme is minimizing the difference between the total
upgoing wavefield recorded at target level, P(ζ )−

j (zd ;z0),
and the predicted upgoing wavefield via the estimated
impulse responses at the same level, i.e. the residual
∆P(ζ )

j (zd):

∆P(ζ )
j (zd) = P(ζ )−

j (zd ;z0)−∑
i

X̂(ζ p)
i (zd ,zd)δS(p)+

i j (zd ;z0)

− ∑
i

X̂(ζ s)
i (zd ,zd)δS(s)+i j (zd ;z0), (6)
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where ˆ indicates that it is an estimated value. To drive
the residual, equation 6, to zero, we minimize the following
objective function:

J(ζ )ls =

(
1

σ2
n

)
∑
ω

||∆P(ζ )
j (zd)||2F , (7)

where the parameter σn is a data weight, ω is the temporal
frequency and the underscript F indicates the Frobenius
norm of the residual (Golub and van Loan, 1996).

In general this inversion problem must be regularized.
In this work, we use a constraint that promotes sparsity
on the estimated impulse responses in the time domain.
Sparsity here means that the estimated impulse responses
in the time domain, preferably consist of a series of large
spikes. This sparsity can be found with any non-quadratic
regularization term that penalizes the typical smearing of
energy from quadratic norm (in the our case, Frobenius
norm) and favor sparsity (Wiggins, 1978; van Groenestijn
and Verschuur, 2008, 2009, 2010; Soni et al., 2012a,b).
Here we use a mixed l1− l2 norm, given by:

J(ζ )reg =∑
t

∑
i, j

√√√√
1+

x̂(ζ p)2
i j

σ2
x

+∑
t

∑
i, j

√√√√
1+

x̂(ζ s)2
i j

σ2
x

, (8)

where t represents time, the parameter σx is a model
weight, x̂(ζ γ)

i j denotes an element of the estimated impulse

responses matrix x̂(ζ γ) in the time domain. Further, a
time-window is placed over the update of x̂(ζ γ) in the time
domain to impose causality and select the desired arrivals.

With the sparsity constraint, equation 8, we get the
following constrained objective function:

J(ζ )(n) = J(ζ )(n)ls + ε
2J(ζ )(n)reg , (9)

where ε is weighting applied to the constraint in the
minimization process and superscript n represents the nth

iteration.

We used the descent iterative optimization process to
solve the above minimization problem, where the descent
direction is given by minus of the gradient of the equation
9. This gradient is given by:

∇ζ γ J(η)(n) = ∇X̂ζ γ

J(η)(n)
ls + ε

2
∇x̂ζ γ

J(η)(n)
reg , (10)

where the matrix ∇X̂(ζ γ)J
(η)
ls is given by:

∇X̂ζ γ J(η)
ls =−

(
1

σ2
n

)
∑
ω

[
∆P(η)

j (zd)
(

δS(γ)+(zd ;z0)
)†
]
,(11)

where superscript † indicates the complex adjoint of δS(γ)+,
i.e. the complex conjugate of the transposed matrix and
each element of the matrix ∇x̂(ζ γ)J

(η)
reg is given by:

∂J(η)
reg

∂x(ζ γ)
lm

=∑
t

x̂(ζ γ)(n)
lm√

σ4
x +σ2

x x̂(ζ γ)(n)2
lm

, (12)

With this descent direction we can estimate the target
impulse responses as an iterative process with its update
in every iteration n given by:

X̂(ζ γ)(n+1)= X̂(ζ γ)(n)+α
(ζ γ)(n)

∆X̂(ζ γ)(n), (13)

where X̂(ζ γ)(n+1) indicates the update of the estimated
impulse responses for the nth iteration, ∆X̂(ζ γ)(n) ≡
−∇ζ γ J(η) is the descent direction and α(ζ γ)(n) is frequency
and time independent step length that scales the update.
This step length must be chosen such that the constrained
objective function value, see equation 9, decreases for
every iteration, i.e. J(η)(n+1) < J(η)(n). In the first iteration of
this algorithm, we set the values of X̂(ζ γ)(1) to be zero.

Numerical results

The effect of the proposed inversion scheme will be
demonstrated on one synthetic dataset. The synthetic
dataset was simulated with an elastic Finite Difference
algorithm using a Ricker pulse as wavelet and considering
13.0 Hz as peak frequency. To generate this synthetic
dataset we used one elastic model spanning 6000 m in the
lateral direction and 1300 m in depth with a very complex
overburden, displayed in Figure 1, which has a and it has
free-surface on top. The model contains a target area,
consisting of two horizontal reflectors. As a datum level
we will consider zd = 700, just above these two reflectors.

The up- and downgoing wavefields for synthetic dataset
was estimated through extracting the stressfields (Txz and
Tzz) and particle velocities (Vx and Vz) at target level and
applying an elastic wavefield decomposition (Schalkwijk,
2001). We used 201 sources located at surface z0 = 0 m,
positioned from x=1000 m to x=5000 m, with increments
of 20 m and we used 201 receivers located at depth level
zd = 700 m (target level) from x=1000 m to x=5000 m, with
increments of 20 m. Figure 2 shows for a source positioned
at the surface at x = 3000 m, the down- (on the left side )
and upgoing (on the right side) wavefields for P- (on the
top) and S-waves (on the bottom). For that model, the
estimated impulse responses, at target level zd = 700 m,
should exhibit at least two events.

Next, we carry out our inversion scheme using the
up/downgoing wavefields for a varying number source
responses. First, we use all 201 source locations at
the surface. Figures 3 and 4 display the estimated
impulse responses (on the right side) for P- and S-waves,
respectively, after 30 iterations of the inversion scheme
with sparsity constraint (on the bottom) and without sparsity
constraint (on the top), from a virtual source positioned at
target level, x = 3000 and zd = 700 m. As expected, we
observe the two target reflections events, but other than
result without sparsity constraint, the result with sparsity
constraint has high resolution and few noticeable artifacts.
Further, we can observe a good agreements between the
estimated (on the the center) and the measured upgoing
wavefields (on the left side) for both results. Also note
that all AVO effects due to angle-dependent reflections at
the target reflections have been recovered. Thus, these
estimated impulse responses can serve as input for a local
reservoir characterization process.

Next, we will investigate how these results depend on
the source sampling. We can see that the wavefields
displayed in Figure 2 for P and S-waves, that up and
downgoing wavefields exhibit a large amount of complex
events due the complex overburden. This will provide a rich
illumination at target level zd = 700 m from all downgoing
events. Thus we expect that we can use less dense source
sampling to estimate the impulse responses than the first
results shown in Figures 3 and 4. This observation is
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Figure 1: Elastic parameters used to generate elastic
synthetic data. Top: vp velocity model. Middle: vs velocity
model. Bottom: density model.

confirmed in the results shown in Figures 5 and 6 for P
and S-waves, respecitely, which displays the results of
the sparse inversion scheme after 30 iterations for two
factors (2 and 4) of decimation of sources. Despite that
the resolution decreases for both results, with increasing
decimation factor (from top to bottom), we note that the
estimated impulse responses for both types of waves still
exhibit the two events and we can observe that a good
agreement between the estimated (on the center) and the
measured upgoing wavefields (on the left side) for both
results is observed.

Conclusions

In this paper we discuss one part of the complete JMI
strategy for characterizing a certain target area (e.g. the
reservoir). The JMI process can generate the up- and
downgoing wavefields at any level in the subsurface. In
order to more accurately analyze and evaluate a specific
target area, it was shown that with a dedicated inversion
process the impulse responses from the target area at a
level just above this zone can be estimated in a reliable
manner. Once these impulse responses have been
optimally estimated, they can be used as input for localized
inversion processes, like full bandwidth, full waveform
inversion.

The inversion process aims at finding the impulse
responses such that, when applied to the downgoing
wavefields at the target level, the corresponding upgoing
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Figure 2: Wavefields for P-waves (on the top) and S-
waves (on the bottom) at depth level 700 m from a source
positioned at the surface at x=3000 m. Left: downgoing
wavefield. Right: upgoing wavefield.
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Figure 3: Estimated impulse responses after 30 iterations
without sparsity constraint (on the top) and with sparsity
constraint (on the bottom) for P-waves from a virtual
source positioned at x=3000 m. Left: measured upgoing
wavefield. Center: estimated upgoing wavefield. Right:
estimated PP impulse responses.

wavefields are explained. Furthermore, extra constraints
are included to regularize the problem, like causality and
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Figure 4: Estimated impulse responses after 30 iterations
without sparsity constraint (on the top) and with sparsity
constraint (on the bottom) for S-waves from a virtual
source positioned at x=3000 m. Left: measured upgoing
wavefield. Center: estimated upgoing wavefield. Right:
estimated SS impulse responses.
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Figure 5: Estimated PP impulse responses after 30
iterations from a virtual sources positioned at x=3000 m,
for two different decimation factors. Top: factor 2. Bottom:
factor 4.

sparsity.

The results showed that our algorithm worked very well
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Figure 6: Estimated SS impulse responses after 30
iterations for from a virtual sources positioned at x=3000 m,
for two different decimation factors. Top: factor 2. Bottom:
factor 4

for elastic data, indicating that it is an effective scheme to
estimate elastic impulse responses from a local target from
up- and dowgoing wavefields at the target level. These
results showed that for a model with a complex overburden,
this scheme is very robust to estimate impulse responses
for a target area below this complex overburden, because
in this case, the illumination is richer due the scattering
into overburden and surface multiples. This means that
using all multiples in the inversion process will relax the
requirement of dense source sampling at the surface,
making this a feasible process in realistic 3D acquisition
geometries. Furthermore, a more complex overburden can
provide a much better illumination of the target area in
terms of providing all angles of incidence at the target.
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