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Abstract 

The full waveform inversion is a nonlinear inverse 
problem   in which the values of physical properties 
recovered from seismic data are sensitive with 
respect to noise in data. The problem becomes more 
critical when the number of parameters increases or 
different kind of physical parameters are searched. 
The multi-scale approach is one of the most used 
strategies to make the solution process more stable. 
Tikhonov and other kinds of regularization are also 
used. However, these strategies have some 
drawbacks. The regularization operators and 
parameters influence the solution and the optimal 
ones are expensive to estimate. The multi-scale 
approach demands the choice of imaging frequencies 
and number of iterations for each frequency or other 
stop criteria. The knowledge of the misfit level to stop 
minimizing is a good stop criterion to avoid fit noise 
in data. The main objective of this work is to present 
some numerical experiments of acoustic inversion in 
the context of multi-scale approach considering the 
same total number of iterations but with a different 
number of imaging frequencies for the same 
bandwidth. The experiments show that the results 
can be less sensitive to noise in data if the number of 
iterations for each frequency is reduced and the 
number of frequencies is increased. The results are 
compared with images recovered from noise free data 
in order to show the effect of different settings.  

Introduction 

The full waveform inversion is a technique to recover an 
image of the subsurface using data from a seismic 
survey. It is computationally expensive because it is 
based on two-way wave equation. Although the first 
concepts about the technique were stated in the 80's 
(Tarantola, 1984), the progressive improvement of 
computational resources have made the technique viable. 
Nowadays, a lot of studies have contributed to this 
important and promising tool for exploration geophysics. 

It is well known that many aspects are involved in solving 
such inverse, non-linear, and ill-posed problem. The 
solution process is usually sensitive to noise in data and 
the instability increases with the large number of 

parameters, different kinds of parameters, and limitations 
of acquired data. By this way, the development of 
stabilization strategies is very useful to generate robust 
FWI methodologies. 

The multiscale approach is a well-known stabilization 
strategy (Bunks et al., 1995). In this approach, the inverse 
problem is solved in frequency domain using some 
previously selected imaging frequencies. The data is 
transformed to frequency domain and an image is 
obtained iteratively by means of minimization of residual 
considering low frequency data. Then, such image is 
used as input to the same procedure, now with a higher 
frequency. This is repeated up to the highest imaging 
frequency and the final image is obtained. 

However, the multiscale approach is not enough and 
many other regularization tools are applied in order to 
avoid noise fitting by means of including the prior 
knowledge in the inversion procedure. Methods based on 
Tikhonov regularization (Aster et al., 2005) are the most 
often used. They change the basic functional based on 
the data residual adding a penalty factor that depends on 
estimated the parameters. Total variation regularization 
(Aster et al., 2005) and multiplicative regularization (Van 
den Berg et al., 2001 and Hu et al., 2011) are also used. 
During the minimization of the new functional, depending 
on the regularization operator, the contribution of noise in 
the recovered image is attenuated. 

Although regularization methods are effective, they have 
some drawbacks. The first is that Tikhonov-type 
regularization leads to smoothed images. In order to 
avoid the defocusing on transitions between layers the 
regularized methods should be adapted (Zhang et al., 
2013). The second problem is that regularization may limit 
the size of optimization step, reducing the convergence 
velocity and increasing the number of wave propagation 
modeling. Another problem is that it is difficult to 
determine the value of regularization parameters in 
advance. In fact, the minimization of a penalized 
functional means solving a new problem, not the original 
one. Then, the solution to the new problem may not be 
the best solution to the original problem. 

Among other regularization methods, Fichtner (2011) 
discusses the “regularization through finite number of 
iterations”. It is an aspect that deserves special attention 
because it has an important role in nonlinear inverse 
problems. The author highlights that, in practice, the 
suitable number of iterations is difficult to determine.  

Besides the regularization, the functional to be minimized 
can have other components. The correct choice of the 
norm of the difference between survey data and 
computational data is important because it makes the 
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functional more robust. The same can be achieved by the 
use of a suitable weighting operator of data. The fact is 
that different functionals lead to different solutions and we 
want to avoid this ambiguity. Here, we study the influence 
of the number of iterations of the minimization algorithm 
and the choice of frequencies used in the multiscale 
approach on the recovered image. The objective is to 
recover a better image, less sensitive to noise, 
considering no knowledge of the noise level. We can 
show that the correct choice of the number of frequencies 
combined with the number of iterations can be useful to 
obtain better images, more robust with respect to noisy 
data. 

Inverse problem 

In this work we treat the acoustic inversion of seismic 
data. Although more complex inversions based on elastic 
modeling of wave propagation have been developed, the 
acoustic inversion is still very much used because it is 
computationally efficient. Moreover, many works discuss 
the validity of this modeling that ignores elastic effects 
(Marelli et al., 2012), so the field of its application and its 
limitation have been well understood.  

In acoustic inversion, the recovered image represents the 
p-wave velocities (��) at nodes of the grid. In order to 
constrain the parameters of inversion � we use the 
second transformation of velocities described by Habashy 
et al. (2004) and rewritten as follows: 

 ����� = ���	
�� + ���������� + ��� 	. ( 1 ) 
 

So, the velocities are in a range between ����� = 100�/� 
and ���	
 = 6900�/� and the inversion parameters are 
unconstrained, � ∈ �−∞,+∞�. In this paper we consider 
that the density of the model is uniform and known. 

The misfit functional we use is the simplest possible, 
without weighting or regularization, the least-absolute-
values norm (�1-norm) of the difference between 
observed data �  and computational data ��: 

 !"# =$%�� − ���%;
'

�(#
 

( 2 ) 
 

where ) is the number of traces. It is well known that, in 
general, �1-norm leads to more robust functionals with 
respect to noise in data than �2-norm (Fichtner, 2011 e 
Brossier et al., 2010). Furthermore, we want a robust but 
simpler functional, so we avoid the hybrid ones like the 
Huber norm (Guitton, 2003). Adopting the �1-norm, the 
gradient of the functional with respect to the model 
parameters is given by: 

 +"# = ℜ-./01; ( 3 ) 
 

with 

 2� = 3�� − ��
�4∗

|�� − ���| 	 ; ( 4 ) 
 

where 0 is the data misfit vector, ℜ denotes the real part 
of the complex number, * denotes the conjugate of a 
complex number, and t denotes the transpose operator. 
Note that the gradient is computed using the adjoint 
formulation (Plessix et al., 2006). This avoids the explicit 
forming of the derivative matrix .. 
In order to minimize the misfit functional !"#, we use a 
quasi-Newton method, the limited memory version of 
BFGS algorithm (Liu et al., 1989). The multiscale 
approach is adopted. 

Forward problem 

The forward problem is modeled by the second-order 
wave propagation PDE in frequency domain: 

 
789�:� ;�:, 7� + ∇	 ⋅ >1? ∇;�:,7�@ = A�:, 7�; ( 5 ) 

 

where : represents the spatial coordinates, ;�:, 7� is the 
component of pressure field, 7 is the frequency, 9 is the 
Bulk Modulus, ?  is the density, and A�:, 7� is a source 
term. The upper border of the model is the free surface 
and the other borders are nonreflective boundaries. 
Furthermore, perfect matched layers are implemented 
combined with the nonreflective boundaries. 

For each new velocity model, the numerical solution of 
Equation (5) is carried out by a staggered grid finite 
differences scheme using five points. In order to obtain 
better accuracy and avoid the “inverse crime”, the 
synthetic acoustic data was generated by a staggered 
grid finite differences scheme using thirteen points. More 
details about these schemes and the absorbing 
boundaries used can be found in Hustedt et al. (2004). 

The finite difference scheme used to solve Equation (5) 
leads to a system of linear equations that is solved by an 
implementation of LU factorization known as super-LU (Li 
et al., 2003). In this case, the LU factorization is suitable 
because we have to solve as many linear systems as 
shots, but the matrices of the systems are the same. 

Numerical Experiments 

In order to verify if the solution is sensitive to the number 
of imaging frequencies and iterations for each frequency, 
some numerical experiments of inversion of synthetic 
seismic data were performed. 

First of all, synthetic seismic data were generated and 
used as observed data.  The 13 grid points scheme of 
finite difference was used to solve the acoustic wave 
propagation over the “exact model” (Figure 2) for 
hundreds of frequencies. After that, the Inverse Fourier 
Transform was used to generate seismograms in time 
domain. Such seismograms compose the first set of 
observed data. In this work we call this set of “exact data”. 
Random noise with Gaussian distribution was added to 
“exact data” in order to generate the “noisy data”. Both 
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sets of data were inverted to recover an image of p-wave 
velocity model. The seismic data simulates a split-spread 
seismic survey with 382 traces for each one of the 188 
shots. A Ricker wavelet of 8Hz of pick frequency was 
used as a source to generate synthetic data and during 
the inversion. 
 

 
Figure 1: One of the seismograms of the exact data set 
(left) and noisy data set (right). 

 
Figure 2: The exact p-wave velocity model used to 
generate exact seismic data. It is the acoustic 
Marmousi/SEG model with a layer of water. 

 
Eighteen experiments of seismic data inversion were 
performed. Some of them were done using exact data 
and others were done using noisy data. Two different 
initial models were given as initial guess for the 
minimization process. Both of them were obtained by 
smoothing of the exact model in different degrees. The 
second model is smoother than the first one and they can 
be seen in Figure 4(a) and Figure 5(a). A different number 
of imaging frequencies and total number of iterations 
were applied in order to verify their influence over the final 
image. Note that the first and last imaging frequency is 
the same for all results, 6Hz and 15Hz, respectively. For 
each imaging frequency, the only stop criterion is the 
number of iterations to have a fair comparison between 
results. The inversion experiments can be summarized as 
follows: 
 

1. Inversion of the exact seismic data using the first 
initial model and the total number of iterations is 
80, equally divided between the 4, 8, 20, or 40 
imaging frequencies;  

2. Inversion of the noisy seismic data using the first 
initial model and the total number of iterations is 
80, equally divided between the 4, 8, 20, or 40 
imaging frequencies;  

3. Inversion of the noisy seismic data using the 
second initial model and the total number of 
iterations is 120, equally divided between the 4, 
8, 20, 40 or 60 imaging frequencies;  

4. Inversion of the noisy seismic data using the 
second initial model and the total number of 

iterations is 160, equally divided between the 4, 
8, 20, 40 or 80 imaging frequencies. 

 

In all of the inversion experiments, the velocity at each 
grid node of the finite differences scheme is considered 
an unknown parameter of the inverse problem, except   
the layer of water and the PML. So, for all the 
frequencies, the grid is the same and has 767x293 nodes 
in x and z direction respectively. The number of 
parameters is 767x243.  

In order to compare the results, the mean absolute error 
between the recovered image and the exact image was 
computed for each updated model during the inversion 
process. Figure 3 shows the evolution of the error. The 
evolution of the misfit is not presented here because the 
comparison is difficult since different frequencies have 
different levels of misfit and are not comparable. 
Furthermore, for each image frequency, the value of the 
misfit is reduced (or remains constant) by the optimization 
algorithm. However, the reduction of the misfit value does 
not ensure that the image error is reduced because of the 
noise fitting. So we have opted to show the evolution of 
the image error instead of the misfit. In each graphic, the 
legend shows the number of imaging frequencies used 
and the number of iterations for each frequency. 

Figure 4 shows the recovered images using the noisy 
data after a total of 80 iterations considering the same 
initial model, Figure 4(a). Note that the recovered image 
using 4 imaging frequencies in the range 6Hz-15Hz is 
rough. Using 8 frequencies, such artefacts are reduced 
and using the greatest number of frequencies tested, 
such defects almost disappear. The recovered images 
after 80 iterations using noisy data are not presented 
because the images are similar to each other and they do 
not suffer of noise fitting.    

Figure 5 and Figure 6 present the recovered images after 
120 iterations and 160 iterations. Note that, in both cases, 
the used initial model was the second one. So, since it is 
smoother than the first one, consequently far from the 
exact model, a greater number of iterations were applied. 
Comparing Figure 5 with Figure 6 (b) and (c), 
respectively, the increment in the number of iterations 
increases the image error. Such comparison is easier to 
observe comparing red and green curves of Figure 3(c) 
and (d). On the other hand, increasing the number of 
imaging frequencies in the same range, the greater 
number of iterations allows obtaining better images 
(smaller errors). 

 



FWI: The role of the imaging frequencies and the number of iterations in the reduction of the sensibility to noise 
 ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

Fourteenth International Congress of the Brazilian Geophysical Society 

4

 
Figure 3: The evolution of the image error (m/s) during the 
process of inversion. 

 

 

 
Figure 4: The model used as initial guess to the 
minimization process (a) and recovered images after 80 
iterations using 4, 8, and 40 frequencies.  
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Figure 5: The model used as initial guess to the 
minimization process (a) and recovered images after 120 
iterations using 4, 8, and 60 frequencies. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6: The model used as initial guess to the 
minimization process (a) and recovered images after 160 
iterations using 4, 8, and 80 frequencies. 

Conclusions 

It is well-known that the bandwidth of imaging frequencies 
is very important because it defines the size of structures 
that can be recovered from seismic data. However, 
theoretical studies show that it is possible to estimate the 
imaging frequencies and a relatively small number of 
frequencies is enough to obtain good images (Sirgue et 
al., 2004).  

In this work we present some numerical experiments of 
inversion of synthetic seismic data with and without noise. 
The inversion results of exact data seem to be insensible 
to the number of imaging frequencies. As expected, using 
4 up to 40 imaging frequencies the images are almost the 
same. On the other hand, the results obtained with noisy 
data and a fewer number of imaging frequencies (4 and 
8) seems to suffer with noise fitting because the error 
increases while the misfit function is minimized. However, 
using a greater number of frequencies (20 and 40) the 
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results are not affected. Note that, using 40 imaging 
frequencies, the curve of the error is very similar to the 
curve of the best result obtained with exact data. It shows 
that the number of frequencies has a role of 
regularization. 

Considering a smoother initial model for the p-wave 
velocity, we have to use a greater number of iteration to 
recover the image. However, the results show that for the 
same number of imaging frequencies, the increasing in 
the number of frequencies is not enough to obtain better 
images. This occurs because of noise fitting. The results 
presented here indicate that the increasing of the number 
of iterations should be done together with the increasing 
of the number of imaging frequencies. 

It is important to observe that, for the performed 
experiments, the increasing of the number of frequencies 
does not affect the convergence of the inversion 
procedure. Even in cases where only two iterations for 
each imaging frequency were used, the rates of 
convergence of the image error are very similar to those 
that use up to 8 iterations for frequency. This is interesting 
because, in a context where there is no knowledge about 
the level of the noise and a budget (in the sense of total 
number of iterations or solutions of the forward problem) 
to recover the image, taking into account a greater 
number of frequencies in the bandwidth with a small 
number of iterations to each frequency can be a good 
decision to obtain images less sensitive to noise.  

In order to conclude if such strategy is useful in the 
practice of geophysics, more complex inversion 
experiments should be performed. First, inversion of 
synthetic data with different kinds and levels of noise 
should be done. Furthermore, the reconstruction of more 
complex models including the density and s-wave velocity 
should be carried out. Moreover, such strategy should be 
tested to the inversion of real data. 
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