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Abstract

In this paper, we developed a migration method
based on the least squares method (LSM), which
uses the Kirchhoff operator. The Kirchhoff operator
is currently the most widely used migration operator
and it is generally based on ray tracing algorithms
which often does not work well in complex media.
To improve the Kirchhoff operator performance for
modeling and migration and use it in an effective way
with our LSM procedure, the traveltimes are computed
using a maximum amplitude criterion by the rapid
expansion method (REM). Using Kirchhoff operators
with this alternative way to compute traveltimes
we implemented an optimization procedure seeking
a correct reconstruction of the reflectors in order
to obtain subsurface images with better seismic
resolution. The proposed least-square Kirchhoff
migration with REM (LSKM-REM) was tested on the
Marmousi dataset and the results obtained with
the proposed optimized procedure showed higher
quality images when compared with the conventional
Kirchhoff migration results.

Introduction

The Kirchhoff migration has been commonly used in
seismic processing due to low computational cost, but
the migration and modeling using the Kirchhoff operator
is based on ray tracing which often does not provide a
good image. Thereby, it becomes increasingly necessary
to use other ways to get the traveltimes. Therewith, we
implemented an optimization method with the Kirchhoff
operator with traveltimes based on the REM (Kosloff, 1989)
to improve the quality of the final migrated image. The
LSKM-REM method implemented uses arrival traveltimes
obtained by the REM using the maximum amplitude
criterion. The LSKM-REM consists of finding a model
closer to true reflectivity.  Thereby, for each model
obtained iteratively, a new synthetic dataset is modeled and
compared with the observed dataset. The final reflectivity
model will be the one that best minimizes the objective
function.

In 2014, Santos and Pestana proposed an inversion
migration procedure based on least-squares Kirchhoff
migration (LSKM) and it was tested with complex data.
Their study shows that the LSKM scheme can noticeably

reduce migration artifacts and improve seismic resolution.
Additionally, the adapted gradient method was used in
order to reduce computational cost and provide a better
image with much higher quality (approximates the true
reflectivity) minimizing the error between observations and
predictions (Santos and Pestana, 2014).

In this work, our goal is to show that the LSKM with
traveltimes tables obtained by the wave equation modeling
procedure using the rapid expansion solution method and
based on the maximum amplitude criterion can provide
better optimized image with much higher quality when
compared with the LSKM results using the ray tracing
traveltimes. Therefore, the traveltimes in complex media
using the REM with the maximum amplitude criterion can
produce better results when applied combined with the
Kirchhoff operator through an optimization procedure.

Theory

Assume that the linear forward modeling operator L
satisfies (Schuster et al., 1993; Nemeth et al., 1999; Dai
et al., 2012; Santos et al; 2014):

d=Lm, (1)

where d is a matrix of modeled data and m is the reflectivity
model matrix. The observed data d, is described by:

d, =L,m,, (2)

where m, is the true earth reflectivity model matrix and
L, is the forward modeling operator for the actual model.
Unless stated otherwise, we assume that L = L,,.

Seismic migration uses the transpose of the forward
modeling (1) that is:

my,;; = LTd: (3)

where m,,;, is the migrated section. Substituting equation
(1) in equation (3) yields:

my,;, = L'Lm. (4)

The matrix LTL is Hessian matrix and defines m,,;, as an
LTL - filtered version of m. The migration operator L7 will
correctly reconstruct the actual earth model if LTL is the
identity matrix 1. In most cases L”L is different from the
identity matrix (Nemeth et al, 1999).

To obtain a better reflectivity image, the imaging problem
can be represented as a least-squares inversion problem.
The solution is obtained by minimizing the objective
function O(m), which is defined as the least-squares
difference between the forward modeled data and recorded
data d,:

O(m) = |Lm — d, | (5)
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The iterative solution reads:

Gy =L"[Lm—d,] (6)
_ GG

%= ) (k) 7

my, | =my — 4Gy. (8)

Equation (6) represents the migration of the difference
between modeled data and observed data associated with
the model m. This vector of migrated residue is in the same
direction of the gradient vector defined in m, but in opposite
signal. The gradient vector is represented mathematically
by G, , pointing in the direction of maximum slope (Santos
et al,, 2013). oy is a scale factor and called the step
size which is computed in each k-iteration. Equation (8) is
used to update the reflectivity model through this optimized
procedure in each iteration.

The Kirchhoff operator

This paper considers least squares prestack depth
migration using a Kirchhoff operator. Kirchhoff migration
involves integrating traces amplitudes over a reflectivity
model. After traveltimes and Kirchhoff weights have been
calculated, the migration process can be written as a trace
by trace process.

In case of LSM the forward and adjoint operator are
required. Given the simplicity of the Kirchhoff adjoint
operator, the forward operator is straightforward to define.

The forward Kirchhoff operator can be written as

d(s,g,t) = ZZ m(x,z) K(s,g,x,2,t) 9)
N: N,

where d(s,g,t) is the data, m(x,z) is the model, and
K(s,g,x,z,t) are the Kirchhoff weights. Here r is the
traveltime that is normally obtained via ray tracing through
the velocity model.

The adjoint, or migration operator, can be written as

m(x,z) = Z d(s,g,t) K(s,8,x,2,1) (10)
Ny*Ng

Given the forward Kirchhoff operator, L, as defined by
equation (1), data can be generated from the reflectivity
model. Given recorded data, we may want to collapse
diffractions to the position where reflections occurred. To
do this we should use the inverse of the forward operator,
L~!. Typically for imaging the inverse is approximated by
the adjoint operator, LT, equation (3).

Travel time by maximum amplitude

Computation of the traveltimes is the heart of the Kirchhoff
algorithm. Ray tracing is the most used method to compute
the arrival times. An alternative procedure for computing
the arrival times for a grid of points is by solving the eikonal
equation by finite-differences method.

Here we suggest an alternative procedure to calculate the
arrival times based on the maximum amplitude criterion.
It is based on the wave equation solution using the rapid
expansion method (REM), first presented in Kosloff et al.
(1989). To determine the traveltimes, we use the maximum
amplitude criterion to identify time for the direct wave

computed from the modeling. This maximum amplitude
criterion is justified since the direct wave has the maximum
amplitude at the direct arrival time. Late arrivals have
smaller amplitudes due to the transmission losses. Using
the maximum amplitude criterion the travel time T7;; for
each grid point (i, j) at each time step k of the Chebyshev
recursion is updated and after finishing the last time step
of modeling the traveltimes table is saved in a file to be
used as input for the Kirchhoff migration and modeling
procedures.

Results

To validate the LSKM implemented here, we have used
the 2-D Marmousi dataset which is a very complex depth
model. The true velocity model is presented in Figure
1, a smoothed version of the velocity model is shown
in Figure 2 and the reflectivity model for the Marmousi
model is shown in Figure 3. First, we migrated the original
Marmousi dataset that was generated by a finite-difference
scheme. Using the Kirchhoff method (KM) with traveltime
computed by a ray tracing method (rayt2 code from the
Seismic Unix - CWP) and using the smoothed version of
the velocity model (Figure 2) we obtained the migrated
result shown in Figure 4. The result using the KM-REM
is shown in Figure 5. From these results we can notice
that the migration results obtained with both method are
reasonable. However, when the LSKM and LSKM-REM
optimization procedures were applied, Figures 6 and 7,
with LSKM, and Figures 8 and 9, with LSKM-REM, for
10 and 50 iteration, respectively, we did not observe an
increase of resolution as expected. We can not notice a
better result with the LSKM-REM in comparison with the
LSKM. This method using an optimization procedure could
better image the reflectors throughout the model, improving
the resolution of structures in which the first migration result
did not properly image.

From these results, we can notice that both optimization
procedures using the Kirchhoff operator did not improve
effectively the migration results of the first migration. This
can be attributed to some issues as the wavelet in the
observed dataset ( FD Marmousi dataset) and the modeled
dataset used on the LSKM have different wavelet and some
issues related with the amplitude of both dataset. To obtain
better results we need a good estimation of the wavelet and
also a good amplitude relation between the datasets.

To prove that the proposed method can produce high
resolution results, we generate a new dataset applying the
REM traveltimes and using a SU demigration code. The
obtained dataset was denoted as our observed dataset.
This new dataset is generated knowing the source wavelet
and during the optimization procedure, on each iteration,
the modeled dataset (calculated dataset) will have the
same wavelet and both of them will have a more reliable
comparison in terms of amplitude.

After obtaining the first migration result using the KM-REM,
which is shown in Figure 10, we continue the optimization
procedure and using the LSKM-REM, we can notice from
Figures 11 and 12, results using 10 and 50 iteration,
respectively, that after these iterations the results provide
good images with much higher resolution in comparison
with the first migration result ( Figure 10). To prove its
efficacy we also present the objective function (Figure 13)
which tends to a minimum, as expected.
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Conclusions

In this paper we have proposed a least-squares Kirchhoff
migration method using traveltime arrivals obtained through
the rapid expansion method, which is a wave equation
solution method, using the maximum amplitude criterion.
From our tests, the LSM results for the Marmousi modeled
dataset using the Kirchhoff-REM provided images with
higher resolution than the ones obtained with the original
data. We also noticed that the LSKM-REM showed results
with a much better lateral resolution of the reflectivity model
without requiring a costly acquisition of denser dataset.
Additionally we also concluded that the least-squares
Kirchhoff migration combined with the rapid expansion
method helped to reduce artifacts in a natural way by
generating the reflectivity model that predicts the observed
data in a least-squares sense.

The present version of LSKM-REM uses an adapted
gradient method to improve the convergence of the method
and provide migrated images with higher resolution. From
the imaging results, we can see that for few iterations,
such as 10, the LSKM-REM shows a better imaging for
the modeled data using the Kirchhoff-REM method than
the original data. We can also see from the graph of
the residual error versus the iteration number that the
residual error gradually decreases as the iteration number
increases, as expected. Further works is needed to apply
this method for synthetic and real datasets. We need to
have a good estimation of the source in order to obtain
a reliable amplitude comparison between the modeled
and observed datasets. We still need to improve the
convergence speed up of the proposed method by using
other inversion methods and also using different objective
functions.
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Figure 1: Velocity field of Marmousi model.
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Figure 2: Smoothed version of the Marmousi velocity field.
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Figure 3: Reflectivity of the Marmousi model.
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Figure 4: Kirchhoff migration result of original Marmousi
dataset (FD modeled dataset) using traveltimes tables
computed by REM.
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Figure 5: Kirchhoff migration result of the original
Marmousi dataset using traveltime tables computed by ray-
tracing (Seismic-Unix code) using the smoothed velocity
model shown in Figure 2.
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Figure 6: Least-squares Kirchhoff migration result of the
original Marmousi dataset, after 10 iterations, using ray-
tracing traveltime tables.
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Figure 7: Least-squares Kirchhoff migration result of the
original Marmousi dataset, after 50 iterations, using ray-
tracing traveltime tables.
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Figure 8: Least-square Kirchhoff migration result of the
original Marmousi dataset, after 10 iterations, using REM
traveltime tables.
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Figure 9: Least-square Kirchhoff migration result of the
original Marmousi dataset, after 10 iterations, using ray-
tracing traveltime tables.
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Figure 10: Kirchhoff migration result of the modelled Figure 13: Data residual versus iteration number for
Marmousi dataset using REM traveltime tables. the modeled dataset by Kirchhoff with REM'’s traveltimes

tables.
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Figure 11: Least-squares Kirchhoff migration result of the
modeled Marmousi dataset, after 10 iterations, using REM
traveltime tables.
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Figure 12: Least-squares Kirchhoff migration result of the
modeled Marmousi dataset, after 50 iterations, using REM
traveltime tables.
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