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Abstract  

The Finite Differences Method (FDM) is very popular in 

the acoustic wave modeling. However, the need to use of 

a very fine grid or a small sampling interval to improve the 

accuracy may increase the computational cost. An 

alternative employed in literature is to use optimized 

operators combined with the high FDM orders in order to 

infer a better precision without increasing the cost. 

Although, to obtain such efficiency, it is necessary to 

generate the dispersion and stability parameters for each 

discretization order, as they vary according to Finite 

Difference (FD) order and coefficients. We present a 

strategy to generate the dispersion and stabilities 

parameters used in the wave acoustic modeling using the 

high FDM orders. The appliance of this strategy combined 

with the optimized operators allows a more accurate 

modeling without altering the computational cost or 

reducing the cost with the same accuracy.  

     

Introduction 

In wave propagation in geological complex means, the 

seismic modeling is a tool that has been indispensable 

(Chu e Stoffa, 2012). The problem of the propagation of 

seismic waves simulation corresponds to solve differential 

equations describing the propagation inside the Earth. 

Among the various numerical methods proposed to solve 

these differential equations, the FDM is the most popular, 

because it is easy to deploy and one of the most 

successful for being ideal for complex models, due to its 

efficiency (Alford et al., 1974; Virieux, 1986, Chu and 

Stoffa 2012). This method is based on the approximation 

of the derivatives of the differential equations by replacing 

those by discrete approximations.  

Generally, in order to approximate the derivatives, a 

truncated expansion of the Taylor series is employed, and 

then the coefficients relating to each point of the stencil of 

the formula of finite differences (operator) are obtained. 

Chu and Stoffa (2012) found two Binomial Window 

families that may be used to derive FD operators 

analytically. With a small alteration, this window may also 

be used to derive operators with greater dispersion 

property. However, the use of this window involves the 

control of a hard to determine parameter. Another fact is 

that this function needs to be handled carefully, because 

it may affect the final result in a substantial manner 

(Zhang and Yao, 2013). 

A way to work around this problem is to use optimization 

techniques to generate optimized operators in order to 

minimize the error of dispersion (Chu and Soffa, 2012). 

Searching for this minimization, Zhang and Yao (2013) 

reduced the FDM numerical dispersions in the presence 

of high frequencies. The DF operator coefficients were 

optimized through the maximization of the convergence of 

the wavenumber, given an error limit. 

Within this context, this work aims to present the precision 

obtained with the appliance of the optimized coefficients 

in the acoustic wave modeling with FDM. The dispersion 

and stability analysis that generated the parameters that 
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optimized the acoustic wave modeling was also 

conducted.  

The dispersion analysis and the numerical modeling 

demonstrated the new operator was more accurate than 

the conventional finite differences operator (Taylor) was, 

when the same number of points in the stencil of the 

operator is used in the calculation of the spatial 

derivatives. 

 
Finite Differences Operator 

The conventional FD operator for second spatial 

derivative for the      function may be written as a 

function of the truncation of the Taylor series around the 

    point in the following manner: 
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where    is the sampling interval in the   axis, N is the 

discretization order and    are the coefficients defined by 

the following binomial window (Chu and Stoffa, 2012): 
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A way to reduce the numerical dispersion is to adopt 

window functions to generate optimized coefficients for 

equation 1. Chu and Stoffa (2012) proposed a    window 

function to obtain optimized FD coefficients, which may 

be generated through the following manner: 
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where    is generated from the following optimized 

window function 
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where M is an even number, greater than zero and called 

an optimization parameter. 

Using a final way for the optimized FD operator, one may 

combine the    window function with equation 3 in the 

following manner: 
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where    is the final form of the coefficients to be used in 

the deployment, and may be defined as: 

Conventional Coefficients - Taylor: 

     * 
 

  
        +                        (6a) 

Optimized Coefficients - Binomial Window: 

     * 
 

  
        +                       (6b) 

For     we have: 

   ∑       
   
                                   (6c) 

The M parameter of this window function is hard to 

determine, and, at the same time, needs to be handled 

carefully, because it may affect the final result significantly 

(ZHANG and YAO 2013). ZHANG and YAO (2013) 

determined the    coefficients using an optimization 

scheme that uses the maximization of the convergence of 

the wavenumber, given an error limitation. These 

coefficients are used in this work. 

 
Absolute Error Analysis 

Aiming to assess the improvement in the dispersion 

propriety, the spectral error analysis graph of the second 

derivative for various precision orders was constructed 

(Figure 1). Using equation 5, one could write the absolute 

spectral error formula, written as a function of the 

normalized wavenumber by the Nyquist wavenumber, 

that is: 

    (
  

   
)     *      ∑      (
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where 
  

   
 is the wavenumber normalized by the Nyquist 

wavenumber. 

 

Figure 1 - Spectral Error Analysis for the Second Order 

Spatial Derivative Operator. 

 

Wave Equation in Acoustic Mediums 

The scalar wave equation considering means with 

constant density has following form:  

          

    
          

    
 

       

          

    

                        ,                (8) 



SILVA, SILVA & LANDAU  
 ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

Fourteenth International Congress of the Brazilian Geophysical Society 

3 

where          is the pressure field of the wave,   and   

are the spatial coordinates,   is the time coordinate, 

       is the wave propagation velocity in the mean,      

is the source term,   is the Dirac Delta and    and    

represent the application point of the seismic source in 

the x and z directions respectively. 

Representing equation 8 in its discrete form, we shall 

have: 
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where    ,     ,   are respectively the grid spacing in the 

    direction and temporal and           represents the 

application point of the seismic source, which in this work 

is Ricker (Norman, 1953).  The derivative regarding the 

time is usually discretized using the conventional second 

order FD operator. Incorporating this to equation 9 and 

using the optimized operator symmetry, one has the wave 

field explicitly as follows (Zhou and Greenhalgh, 1992): 
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where   is the time step. 

 

Dispersion and Stability Analysis 

In the discretization of the wave equation through the FD 

operators, an error in the phase and group velocity will 

occur, because both start to depend on the grid spacing, 

the frequency of the signal and the angle of propagation. 

In the case of Wave Equation, this error appears on the 

form of numerical dispersion. 

To determine the dispersion relation, one may consider 

the discrete expression of the propagation of a harmonic 

plane wave in an infinite and homogeneous mean: 

    
                                           (11) 

being   the angular frequency,   √   and   ,    

respectively the wavenumbers in the   and   directions, 

expressed by: 

           e          ,                     (12) 

where   is the wavenumber vector module and    the 

angle between the vertical direction (z axis) and the 

direction of the propagation of the wave. 

Replacing the equation 11 in the equation 10, and after a 

few algebraic manipulations, the following relation of the 

normalized phase velocity is obtained (Liu and Sen, 

2009): 
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wherein C is the velocity of the wave in the continuous 

mean,     is the velocity of the phase of the wave on the 

discretized mean,    are the coefficient of the Stencil of 

the FD operator, h is the grid spacing,  μ is the number of  

Courant - Friendrichs - Lewy (CFL), 
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The value of   controls the stability of the FD scheme and 

may be defined by the analysis of the eigenvalues, where 

the   stability factor for the    wave acoustic modeling 

given by (Liu and Sen, 2009a): 

    
 

√ ∑   
   
   

                                    (14) 

being    the coefficients of the finite differences operators 

defined by equations 6a, 6b and 6c. 

Fixating the value of  , the equation 13 allows to assess 

the error in phase velocity of the discretized wave. A 

commonly used manner to determine the dispersion 

relating to the phase velocity consists in using the 
 

 
 

function, defined as: 
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The μ parameter is used to examine the dispersive nature 

of the waveform considering the phase velocity, which 

allows determining the lesser number of G wavelength 

points. 

The equation (13) relates the normalized phase velocity 

with   grid space interval through the   variable. If the 

discretization process was analytical, the right side of the 

equation would be equal to     for all the   values. Any 
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deviation of     is due to the error caused by the 

discretization of the wave equation. This error is 

responsible for the numerical dispersion.  

The normalized phase velocity represented depends on 

the μ parameter, which has its maximum value estimated 

by the equation (14). However, when choosing such 

parameter, the curve of the normalized phase velocity 

must be generated within the 0.001 error limitation, in 

order to ensure the reduction of the presence of 

numerical dispersion in modeling. 

Considering this restriction, in Figure 2 the behavior of the 

curve is within the interval only for       , considering 

every angle below 
 

 
. For      , the curve was within the 

error limits only for   
 

 
. Thus, I recommend choosing 

       in order to ensure no significant dispersion 

occurs.  

 

Figure 2 - Phase velocity assessment for 4
th

 order 

optimized. 

Using this strategy, one may obtain the following phase 

velocity analysis graph of the wave:  

 

Figure 3 - Comparative phase velocity analysis using 

conventional and optimized FD coefficients.   

 

Numerical Dispersion and Stability Criterion 

To control the numerical dispersion in modeling, there is a 

relation between the lowest velocity of the      

continuous means, the   parameter, which represents the 

number of points necessary to represent the smallest 

wavelength of the grid (    ) and the cutoff frequency 

(        . These parameters limit the maximum grid 

spacing value in order to not create excessive energy 

dispersion (Mufti, 1990). The dispersion relation is given 

by: 
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where      is the lowest velocity of the mean, G is the 

number of points per wavelength and         is the cutoff 

frequency. 

The stability criterion is given by: 

     
   

    
                                 (17) 

where    is the time interval and      is the maximum 

velocity of the continuous mean. 

 

Results 

After the verification of the analytical precision of the 

operator, now its precision on the discrete setting will be 

assessed. In order for this to happen, initially the wave 

acoustic propagation will be simulated in a homogeneous 

mean, using the methodology adopted in the previous 

sections. The aim consists to validate the method and 

assess the precision between the orders of the optimized 

and conventional operator. 

The propagation of seismic waves simulation via FDM 

involves the dispersion and stability relations to determine 

the h and dt parameters. Various works explain these 

relations for modeling with fourth order expansion with 

efficiency and precision. However, for higher orders these 

criteria are not well disseminated. In this work, the 

stability and dispersion parameters (Table 1) were 

generated based on the dispersion and stability criterion. 

In order to validate the modeling code and assess the 

optimized FDM precision, a pressure field propagation 

simulation was conducted using the acoustic wave 

equation for the optimized 8
th
 order and the 8

th
 and 12

th
 

conventional orders (Figures 3 and 4). 

This simulation was conducted on a homogeneous model 

of constant density with fixated dimensions of   

         and           , means of velocity equal to 

            and cut-off frequency of      .  
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The result found in Figure 4 shows the optimized 8
th

 order 

presents greater precision than the conventional 8
th
 order, 

and in Figure 5 it is observed that the optimized 8
th
 order 

presents a very close precision to the 12
th

 conventional 

order. 

N G   h (m) 

C8 3,33 0,11 15 

C12 2,94 0,08 17 

C16 2,7 0,071 18 

C24 2,5 0,061 20 

C36 2,33 0,023 21 

O8 2,9 0,07 17 

O12 2,5 0,054 20 

O16 2,3 0,048 22 

Table 1 - Parameters for the acoustic wave modeling 

using conventional (C) and optimized operator (O). 

 

Figure 4 - Zoom of the Snapshot at 10.5 seconds 

 

Figure 5 - Zoom of the snapshot at 10.5 seconds 

Aiming to verify the optimized FDM precision in a more 

complex model, the modeling with optimized operator of 

the 8
th

 and 16
th

 order was assessed, in the modified 

Marmousi model (Figure 6), comparing with the different 

orders of the conventional model. 

 

Figure 6 - Modified Marmousi model               . 

For purposes of comparison of precision, the wave field 

for the conventional thirty-sixth order was generated. For 

the traits (A, B and C) found in Figures (7 and 8), consider 

the continuous line represents the 36
th 

order and the 

dashed is the order as indicated on the line. 

The assessment in Figure 6 represents the record of the 

receiver located in the position (7000 m, 310 m). The 

source was inserted in position (4600 m, 310 m). The 

cutoff frequency used was of      . The number of dots 

in the x direction is of         and in the z direction 

       . The spacing between the points of the grid, 

for        is of 10 meters and the temporal sampling 

interval for        is equal to         s. The field 

generated by the conventional 8
th

 order (dash A) obtained 

a deviation in relation to the conventional 36
th

 order. By 

contrast, the 8
th 

optimized order had almost the same 

wave field registered by the reference order, followed by 

the 12
th

 conventional order. This indicates that for the 

same order and the same spacing between the grid, the 

optimized method presents a greater precision than the 

conventional method. These results reinforce the 

numerical analysis of the spectrum of the operator and 

the dispersion analysis. 

 

Figure 7 - Assessment of the precision between the 8
th 

and the 12
th 

conventional and the 8
th

 optimized. 

Assessing the 16
th
 order in the Marmousi model, where 

the number of points is                    . The 
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receiver is situated in the position                   The 

record of intervals between            is seen on Figure 8. 

The spacing between the points of the grid, for       is 

of    . The cutoff frequency used was of      and the 

temporal sampling interval for         is equal to 

         s. For dash A of the first interval, which 

corresponds to the conventional method, one can 

visualize a very significant deviation of the record of the 

36
th 

order. The record of the optimized method referring to 

dash B obtained practically the same result as the 36
th 

conventional order. 

 

Figure 8 - Assessment of the precision between the 16
th
 

conventional and optimized 

The results of the optimized method presented in both 

tests a better precision facing the conventional method, 

considering the same order. One must highlight that the 

gain of precision was obtained with the same 

computational cost.  For precision proof purposes, the 

stability criteria regarding the optimized coefficients were 

used, considering the value of spacing between the grid 

increases and the temporal interval decreases in relation 

to the conventional method. 

 

Conclusions 

We presented the assessments and tests using the 

optimized FD scheme applied to the acoustic wave 

modeling. The precision of the optimized FD operators 

was assessed taking into account the error limit used by 

(Liu e Yao, 2013). We presented a way to generate the 

stability and dispersion parameters for any discretization 

order. Through the dispersion analysis, considering the 

CFL constant, the variation of the stability curve was 

limited within the 0.001 error limit to generate the number 

of points per wavelength. This strategy allowed 

generating the h and dt parameters for any discretization 

order without creating a significant dispersion and stability 

during the modeling.  
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