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Abstract  (Font: Arial Bold, 9) 

 
This work presents comparative results of a 2D frequency 
domain reverse time migration algorithm based on the 
least-square formulation. Different approximations were 
taken into account in order to obtain the pseudo-inverse 
of the Hessian of the least-square function so the correct 
reflector amplitudes could be found. 

 

Introduction 

 
Reverse time migration is already established as an 
appropriate technique for imaging geological complex 
regions and for velocity model building. Although its 
advantages do not always appear clearly in practice due 
to problems such as limited acquisition geometry and low 
illumination. 
In order to recover the amplitude as close as possible to 
the true one, we formulate the migration problem as an 
inverse problem based on a least-square functional 
(Tarantola 1984, Lailly 1983). Using this approach those 
authors found that the gradient of this functional with 
respect to the reflectivity corresponds to the conventional 
migration algorithm and the correct amplitude can be 
achieved by applying the pseudo-inverse of the Hessian 
of the least-square functional to its gradient. This 
procedure would correct illumination effects present in the 
migrated image as the Hessian carries information 
concerning the geometry acquisition. 
Despite this possibility, in practice, it is not possible to 
actually compute the exact hessian because of its size. 
Considering this fact, we assume that the hessian is 
composed only by its diagonal terms, making the 
calculation of its diagonal a quite simple process. Other 
than, that we assume three different considerations to 
compute the diagonal of the hessian. The simplest one 
assume a infinite and continuous receiver coverage, the 
second one imposes a homogeneous velocity model and 
the third and more sophisticated approach considers a 
random-phase encoding that considerably reduces the 
computational cost but adds a crosstalk noise that can be 
minimize if the proper number of realizations is apply. The 

results obtain show a numerical comparison of all these 
approximation for a synthetic velocity model. 
 

 

Method 

Considering the acoustic wave equation for constant 
density in the frequency domain 
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where σ stands for the slowness, u(x,ω; σ) the pressure 
field created by a point source at xs, F(ω) the source 
amplitude and ω the angular frequency. For a background 
velocity model associated with the slowness σ0, the 
pressure field is obtained similarly 
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We now define the reflectivity and the scatered field as 
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repectively. Tarantola’s approach defines migration as a 
least-square inverse problem where we attempt to find a 
reflectivity model the minimizes the following error 
functional 
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identify the Following Tarantola’s method it is possible to 
migrated image m as  
 

)(1 rEHm   . 

 
With H representing the Hessian of the error functional. 
Which means that the minimum of a quadratic function is 
obtained by the gradient pre-multiplied by the inverse of 
the Hessian and the best amplitude-preserving migration 
image is obtained by choosing H as the exact Hessian of 
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the error function. In practical terms, however, it is not 
possible to compute the hessian because of its size. In 
this work we propose to approximate the pseudo-inverse 
of the Hessian with a diagonal matrix. This approximation 
would be fully valid in the high-frequency limit but may be 
inadequate with a finite set of frequencies. 
Calculating explicity the expressions for gradient and 
hessian we get 
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respectively. If we consider the linearized case where 
only small reflectivities are taken into account. Whereas 
the scattered field can be written using the definition of 
Green’s function as 
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Substituting the expression above in the equations for the 
gradient and the diagonal of the hessian it is 
straightforward to write 
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and 
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With an infinite and continuous receiver coverage for 
every shot, the term involving the receiver contribution is 
almost constant at least for a homogeneous model and it 
could be neglected. However such naïve approach does 
not give satisfactory results for most cases and the 
excessive computational related to the calculation of this 
term cost cannot always be avoid. In the following we 
present more robust approaches to compute this term. 

 

Migration Weights 

 

The first assumption, as previously mentioned, consists in 
assuming that the term 
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Does not dependo n the spatial coordinates so it can be 
disregarded being a constant fator. The resulting 
migration weight H

(1)
 is 
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The second supposition, on the other hand, takes into 
accound an influence of the receptors. Computing the 
receptor’s Green function for a constant velocity model 
we get 
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In two space dimensions, let x
min

r(xs) and x
max

r(xs) be the 
minimum and maximum receiver positions for a shot 
located at xs (Plessix and Mulder 2004). 

The last approach (assigned to Tang 2011) calculates the 
term corresponding to the receiver using a random-phase 
enconding that allow us to obtain the diagonal of the 
hessian as its true expression plus a contribution of a 
crosstalk that would be less effective if more realizations 
are calculated 

CrosstalkxxHxxH  ),(),(
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Results 

 

The SEG/EAGE salt dome model as used to test the 
effectiveness of the three approximations presented 
above. The true reflectivity model that we wanted to 
recover can be seen in figure 1. 

 

 

Figure 1: True reflectivity model of SEG/EAGE salt dome 
model. 

A marine type acquisition geometry has been chosen and 
a time-domain finite-difference code was used to 
generate the data used in the migration algorithm. The 
migration details are show in table 1. 
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Number of shots 237 

Number of receivers/shots 65 

Minimum offset 80 m 

Maximum offset 2.7 km 

Frequency interval 0.125 Hz 

Minimum frequency 5 Hz 

Maximum frequency 30 Hz 

Tabel 1: Migration details used in the SEG/EAGE model. 

 

The migration result without any pre-conditioner is show 
in figure 2. This is the gradient of the error function 
presented above. The migration results with the 
correspondent weight can be seen in figure 3. 

  

Figure 2: Migration result for the salt dome model without 
any weight application. 
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Figure 3: (a) Amplitude-preserving migration result for 
approximation H

(1) 
and migration weights H

(1)
. (b) 

Amplitude-preserving migration result for approximation 
H

(2) 
and migration weights H

(2)
. (c) Amplitude-preserving 

migration result for approximation H
(3)

 and migration 
weights H

(3)
. 

 

Conclusions 

 

We have presented different strategies to compute 
migration weights that can produce acceptable reflector 
amplitudes when using a frequency domain finite-
difference migration algorithm. The comparison of the 
numerical results using the migrations weights presented 
here show that for deeper reflector, particularly in 
geological complex regions, can only give reasonable 
results when a more robust approximation for the 
contributions of the receiver are made, as the H

(3)
 

approach shows in figure 3. 
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