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Abstract

The seismic waves traveltime modeling is made by
means of ray tracing. The most of works that perform
such kind of modeling uses numerical ray equation
solutions, where rays are parameterized by a variable
that does not have physical meaning, and, then the
traveltime is obtained by an indirect way. This work
proposes the use of the own time and arc lenght as
ray parameters. These variables are physically known
and, for this reason, they provide times, numerically
calculated, along shorter ray trajectories. It allows
to reduce error accumulation for the final traveltimes
values.

Introduction

The ray theory is an integrated part of many techniques
of the sismology, because it carries the possibility of
quantities computation associated with the wave, such as:
traveltimes and amplitudes. Based on this, sismological
modeling, that uses seismic ray tracing, is largely used as
tool in oil industry and in research center to constrution of
subsurface image of the earth. It increases the probability
to set right in hidrocarbons exploration. The model
provides a sense of how each physical parameter of the
medium influences the data, in the way that traveltime
observation can be explicated by means of the features of
the model. Along the path of seismic rays, it is possible to
calculate the traveltimes of compressional waves, and, in
this way, these times are used in a possible work of seismic
inversion, mostly in seismic tomography.

The modeling is done in parameterized seismic velocity
fields by mathematical functions, such that when applying
such functions in the ray equations, the result is a set
of ODE’s (ordinary differential equations), that when is
correctly solved, generates ray trajectories and traveltimes.

In a vast majority fo situations, the equations of ray are
solved by numerical methods, and, thus, the obtained
results are approximations, that are less accurate than
those developed by analytical methods. Works such as:
Figueiró et al., 2005; Teles and Figueiró, 2009; Mendes,
2009; dos Santos, 2008; dos Santos and Figueiró, 2006;
and de Souza and Figueiró, 2004; are examples of such
studies that make use of the methodology treated here to
calculate traveltimes, and use ray equations as shown by

Eq. (1).

The resolution of the ray equations, that serves as the
basis for such modeling, is done by numerical procedures,
and as is well known, accumulation of errors occurs. The
question that is done, with respect to such procedure,
is that, when using the Eqs. (1), the calculation of
traveltimes is done indirectly, it increases the number of
approximations and calculations become less accurate,
therefore: the use of another type of ray parameter is able
to improve the accuracy of calculated traveltimes?

The proposal, established here to perform traveltimes
modeling through ray tracing, is the use of rays
parameterized by time (T ) and arc lenght (S), because
they reduce calculations in the modeling algorithm, and
they decrease numerical instabilities, increasing, thus, the
accuracy of the method.

Ray Equation

Rays play a fundamental role in various branches of
physics. For this reason, it is not surprising that many
approaches can be used to obtain rays by means of a
system of equations. The most common approach, is
based on the high-frequency asymptotic solution of the
acoustic wave equation, that has as result the eikonal
equation (||∇T ||2

2
= 1/V 2). It can be found a detailed

discussion and the derivation of such equation in Santos,
2014. To perform ray tracing, it is used isotropic media
models, that have smooth variations, and in these cases, it
applies the eikonal equation, which is written in cartesian
coordinates as:

ρiρi =
1

V (xi)2 , with ρi =
∂T
∂xi

and i = 1,2 e 3, (1)

where T = T (xi) is traveltime, ρi are the vector components
of slowness ~ρ = ∇T that defines the normal direction of
the wavefront at position ~χ = (x1,x2,x3) and it is tangent
to the ray, and finally V (xi) is the representation of the
acoustic wave velocity v = α. The Eq. (1) can be presented
by the Hamiltonian as H (xi,ρi) = 0, where H can take
several different forms, such as H (xi,ρi) = (ρiρi −V−2),
H (xi,ρi) = (ρiρ

1/2
i −V−1) or also H (xi,ρi) =

1
2 (V

2.ρiρi−
1). The ray equations system is found by substitution
of one of the forms in characteristic Hamiltonian system
(Bleistein, 1984), and this system is solved in terms of a
characteristic. In general characteristics are trajectories in
3D space xi = xi(u), where H (xi,ρi) = 0 is satisfied, and u
is a parameter of the trajectory (C̆erveny, 2001).

The equation of the Hamiltonian which will be adopted
in this work is H = 1/n.[(ρiρi)

n/2 −V (xi)
−n], where the

value of n determines the parameterization of rays. In
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most cases, it is used the ray equations, with n = 2 in
the characteristic system, it makes the ray to have a as
parameter u = τ, where τ is an variable which do not have
a physical meaning of interest. Therefore it has:

dxi

dτ
= ρi ,

dρi

dτ
=

1
2

∂

∂xi

( 1
V 2

)
,

dT
dτ

=
1

V 2 i = 1,2 e 3.

(2)
With the objective to use the ray parameterized by time T
and with arc length S, it is made n = 0 and n = 1 in the
caracteristic system, which results, respectively, in Eqs. (3)
and (4):{

dxi
dT = (ρkρk)

−1
.ρi ,

dρi
dT =− ∂ (ln(V ))

∂xi
, dT

dT = 1 i = 1,2,3.
(3)

and{
dxi
dS = (ρkρk)

− 1
2.ρi ,

dρi
dS = ∂

∂xi

(
1
V

)
, dT

dS = 1
V i = 1,2,3.

(4)

Ray tracing algorithm and traveltime calculation

Trajectory ray equations are obtained when velocity field
is substituted inside the ray equation system described
above, having as result, a particular ODE system. When
these equations are conveniently solved, it is produced a
result that provides the position in the ray and the time that
it spents to travel the distance from the source until such
position. In this way, all points of ray path are obtained.

The resolution method of ray equations can be analytical, in
such case is found an algebraic solution to such equations
(Santos e Figueiró, 2014). Such solution can be numerical,
when it is obtained numerically and it has an approximative
character.

In this work, the ray tracing is done in a numerical way,
and it is used the Euler method. It is equivalent to the
Taylor method truncated after the first term, it can also be
understood as the Runge-Kutta method of order second
(Butcher, 1987). For the use of this method, it is necessary
to have knowledge of boundary conditions of the problem
for a given position ~χ(uk) and, it must have knowledge of
the direction of ~ρ(uk) at the same time. From this stage, a
new position and a ray direction are found with use of the
Eq. (5):

{
~χ(uk +∆u)≈~χ(uk)+

d~χ(uk)
du .∆u

~ρ(uk +∆u)≈~ρ(uk)+
d~ρ(uk)

du .∆u ,
(5)

where ∆u is the step of the parameter, and it is intimately
linked to time T (x) as can be seen in the Eqs. (3) and
(4). The ray is a polygonal line, where the nodes are the
positions ~χ(uk + n.∆u), with n being a positive integer, that
represents the number of steps from the source up to the
arrival point.

To calculate the traveltime that the wave spend to make
certain route, firstly is calculated the time spent between
successive nodes of a polygonal line, and, after, it is made
a sum of all times wasted in each polygonal straight line
segment. As can be see, the equations are different,
depending on the parameterization adopted, therefore, the

manner used to perform the calculation of time depends
on the used parameter. It is the main relevance of this
study. When it is used the Eqs. (2), the times are calculated
as the ratio of the distance between nodes by the average
speed, on the segment length that links successive nodes
positions that are found numerically. When using the ray
parameterized by S, the time spents between these nodes
are calculated with the ratio between the modulus of the
step, ∆S, and the average speed. Finally, when the ray is
parameterized by T , the transit time between successive
nodes is equal to the magnitude of the step ∆T and so the
calculation is much more economic.

Figure 1: Flow charts for the time calculation between
nodes when ray is parameterized by τ, S and T ;
respectively.

The Fig.1 shows flowcharts for step time calculation for
each case of traveltime parameter. As can be seen,
the algorithm for transit times calculation, with the ray
parameterized by τ, involves some approximations which
can be prevented with the ray parameterized by S and,
mainly, by T . In this way, it can be seen that these
last two, reduce, considerably, the action of numerical
approximations, making modeling much more precise for
traveltime calculation.

Initial Conditions

It is known that each ray and traveltime are completely
specified when it is known boundary conditions. In this
work, the method described by Eq. (5), from a point
known by initial conditions, makes possible to visit new
positions. Therefore, the method developed is connected
to the knowledge of the starting point, components of the
slowness vector and the traveltimes at this point. It means,
at the source:

xi = xi0, ρi = ρi0, T = T0. (6)
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The quantity ρi0 determines the initial direction of the ray at
source, which must satisfy Eq.(7):

ρi0ρi0 =
1

V 2

0
, where V0 =V (xi0). (7)

In order to make results more didactic the variables
x1 , x2 , x3 , p1 , p2 e p3 , are replaced, respectively, by
x, y, z, px , py , e pz . In this work, the rays are coplanar, so
they are restricted to the plane y = 0 with py = 0. In this way
the ray trajectory and their equations are reduced to the 2-
D plane. Therefore, the vectors slowness and position can
be written as ~χ = (x,z) and ~ρ = (px, pz).

The components pi0 of slowness vector can be found at
source by the angle θ that the vector ~ρ makes with the
horizontal at the starting point, as can be seen in the Fig.
2. Eq. (8) shows the components of ~ρ0 :

px0
=

1
V0

cos(θ) , pz0
=

1
V0

sin(θ), (8)

com 0≤ θ ≤ π.

S
S
S
S
Sw?

-px(0)

pz(0)

~χN

~ρ

θ

So> -+x

?+z

(0,0)

Figure 2: Trajectory of a ray starting from the source S0 with
certain departure angle θ . It arrives on surface at ~χN .

At every point can be seen that the slowness vector ~ρ is
tangent to the ray trajectory as shown in Fig. 2, and its
components are slowness vetor projections on the axis x
and z of the cartesian plane, so it is valid the relationship
between ~ρ

0
= (px0 , pz0) and the slowness at the source,

such as:

‖~ρ
0
‖=
√

p2
x0
+ p2

z0
=V (S0 ,0)

−1
. (9)

So, it can be noted that at the source, the completed
system of initial conditions is:


x(0) = S0 ,
z(0) = 0,
px0 =V (S0 ,0)

−1 · cos(θ),
pz0 =V (S0 ,0)

−1 · sin(θ),

(10)

since u0 = 0 . This system is used as a basis to generate
rays and calculate transit times by means of the Eq. (5).

Results

To perform the experiments are selected four two-
dimensional isotropic compressional velocity field models,

which are functions of the variables x and z parameterized
by coefficients. In these fields, the speeds are given
in kilometers per second (km/s). The choice of models
aims to have a maximum resemblance to actual geological
situations in order to make applicable such study.

Another important factor, in the choice of models, it is
relative to the mathematical equations for velocity fields in
order to reduce the complexity of ODE’s involved.

In the first two models, the rays are parameterized by time
T , and they are represented mathematically by equations
of the type shown by Eq. (11):

Vn(x,z) = Fn.e(An+Bn.x+Cn.z+Dn.x2+En.z2) n = 1 e 2 (11)

where n represents each model. The first, hereby
appointed by M1, tries to represent a layer of salt that
has suffered a slight compression in the central region,
deforming it as shown in Fig. 3, and this model is
parameterized by Eq. (11), where the coefficients have
the values F1 = 0.0100, A1 = 4.8400, B1 = −0.2020,C1 =
3.5000, D1 = 0.0595 and E1 =−3.5000.

For the second case, the model M2, seen in Fig. 4, tried to
portray a geological situation known as antiform anticline,
where, also using Eq. (11) the coefficients are F2 =
1.0000, A2 = 0.4500, B2 = 0.3300,C2 = 0.4085, D2 =−0.0880
and E2 = 0.4050.

The units of these coefficients are compatible with those
chosen to x, z and t.

Modelo M2
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Figure 3: Model M1, given by Eq. (11) with n = 1.

For other two models, it used as parameters to the rays arc
length S, and, therefore, the velocity fields are written as
shown by Eq. (12):

Vn(x,z)=
1

An +Bn .x+Cn .z+Dn .x2 +En .z2 n= 3 e 4. (12)

In model M3, coefficients have the following values: A3 =
0.9900, B3 = −0.4198,C3 = −0.8986, D3 = 0.0872 and E3 =
0.6319. For such values: model tries to represent
something like a granitic intrusion as can be seen in
Fig. 5. Differently, the model M4 has resemblance
to the continental shelf break model, and it is used:
A4 = 0.2200, B4 = 0.0000,C4 = 0.0000, D4 = 0.0000 and E4 =
−0.1350 in the Eq. (12). M4 is shown in Fig. 6.
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Modelo M1
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Figure 4: Model M2, given by Eq. (11) with n = 2.
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Figure 5: Model M3, given by Eq. (12) with n = 3.
Modelo M2

 0  0.5  1  1.5  2  2.5  3  3.5  4

X - Distance (km)

 0

 0.2

 0.4

 0.6

 0.8

 1

Z
 -

 D
e
p
th

 (
k
m

)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

Figure 6: Model M4, given by Eq. (12) with n = 4.

In this work ray tracing was done based in shooting
methods, where the ray comes from source according
to one given direction. Using ray tracing it is possible
calculate ray attributes that reach to the surface after
travel inside the model without overcome their limits. At
the moment of arrival, it is calculated position and the
traveltimes of these rays. It occurs, then, plotting the path
described by the ray and it is generated graphics of time
as a function of the positions, which are known as time
profiles. In each of the models, it is choosen a position
on the surface to place the source (~χ(S0,0)), and the
calculations are made throughout the extension of a split-
spread asymmetric pattern, resulting in common shooting
families profiles.

For the model M1 the source was placed at S0 = 1.5km,
generating the trace exposed in Fig 7 by means of the Eq.
(3). The calculation of the traveltimes on these rays is the
basis for the generation of profiles shown in Fig. 8.

Figure 7: Ray field parameterized by time T , obtained for
the model M1.
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Figure 8: Traveltimes profile obtained with ray tracing
parameterized by time T for the model M1

In the case of M2, the source is placed at S0 = 1.5km and
the ray tracing is done, too, based on Eq. (3) which resulted
in the ray field shown in Fig. 9 and its traveltimes profile in
Fig. 10.

Figure 9: Ray field parameterized by time T , obtained for
the model M2.

For the model M3, the ray tracing is made with the ray
parameterized by S, and it is based on Eq. (4). In
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Figure 10: Traveltimes profile obtained with ray tracing
parameterized by time T for the model M2.

this model, the source is positioned at S0 = 2.0km, which
generated the ray field exposed in Fig. 11 and the
traveltime profile is shown in Fig. 12.

Figure 11: Ray field parameterized by arc length S,
obtained for the model M3.
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Figure 12: Traveltimes profile obtained with ray tracing
parameterized by arc length S for the model M3.

Finally, for the model M4 the source is placed in the position
S0 = 1.0km and once again the ray tracing is based on Eq.
(4), resulting in Fig. 13 and these rays were responsible for
the generation of the profile shown in Fig. 14.

Figure 13: Ray field parameterized by arc length S,
obtained for the model M4.
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Figure 14: Traveltimes profile obtained with ray tracing
parameterized by arc length S for the model M4.

Discussion and Conclusions

As it is stressed, the seismic modeling using ray tracing is
the basis for seismic procedures, such as: migration and
inversion, for example. It is known that the latter is highly
dependent on the direct problem solution, that is: on the
modeling quality. Many of the mentioned procedures use
results generated by modeling to solve, also in numerical
way, other seismic problems. Therefore, it is necessary
to look for resources that tend to make more accurate
final results, and this need can be achieved by means
of reduction of numerical steps and, so, the number of
approximations. In this study, this is achieved through
the use of alternative parameterizations for the ray. As
can be seen, for traveltimes calculation, the number of
numerical steps necessary, to reach the final results, grows
depending on the type of ray parameter. The sequence
of increasing difficulty is as follows: T , S and τ. Thus, it
can be concluded that, to model traveltimes with maximum
accuracy and economy in processing, it must be chosen
rays parameterized by time T .

Another factor that made interesting the use of alternative
parameterizations of rays is the fact that, depending on the
complexity of the model and of the function of the velocity
field, the ray equations can have a very simpler solution
when choosing the appropriate ray parameter. This can
be seen in the models M1 and M2, which have equation
of exponential type. In this case, the most appropriate
parameterization for the ray is T . Then, the equations of
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the ray are given by Eq. (3), and when using the mentioned
velocity field such equation is solved in a very simple way.
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acústica bidimensional usando diferentes parametrizações
de campos de velocidades. Brazilian Journal of
Geophysics. 24 (1): 103-105.

de Souza A.E.C.M. and Figueiró, W.M.; 2004. Campos
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