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Abstract

Since the early days of seismic processing, time
migration has proven to be a valuable tool for a
number of imaging purposes. Main motivations for
its widespread use include robustness with respect
to velocity errors, as well as fast turnovers and low
computation costs. In areas of complex geology, in
which it has well-known limitations, time migration
can still be of value by providing first images and
also attributes that help in further imaging tasks,
such as depth migration. Application of the zero-
offset (ZO) common reflection surface (CRS) method
to prestack data can be much beneficial to time
migration, since Kirchhoff traveltime operators can
be naturally constructed from the attributes (CRS
parameters) that result from the CRS application. In
the nineties, several studies have shown appealing
advantages in the use of common-reflection-point
(CRP) traveltimes to replace conventional diffraction-
stack operators for a number of stacking and migration
purposes. In this paper, we follow this path introducing
a Kirchhoff-type prestack time migration algorithm
that uses CRP stacking operator. The proposed CRP
operator, together with optimal apertures, is also
computed with the help of CRS parameters. Field data
example indicate the good potential of the proposed
approach.

Introduction

Time migration is an obligatory step in practically all
seismic processing in the oil industry. Roughly speaking,
time migration simulates the illumination of reflectors and
scatterers by means of "zero-offset (ZO) image rays”, which
start with slowness vector perpendicular to the acquisition
surface and returns to that surface along the same
path (see, e.g., Hubral and Krey, 1980; Yilmaz, 2001).
Advantages of time migration include, besides robustness
(less sensitivity to velocity errors), fast turnovers and
low computational costs, also collapse of diffractions and
absence of conflicting dips. In fact, in many situations
(typically mild to moderate laterally velocity variations),
time-migrated images can be sufficient for satisfactory
interpretation. Losses in image accuracy and interpretation
power (mainly associated with geological complexity and
strong lateral velocity variations) are well-known limitations
of time migration, as compared to comprehensive depth
migration.  Because of noise reduction, collapse of

diffractions and triplications, time-migrated images can be
also of help in event picking, seismic tomography (Dell
et al., 2014), as well as time-to-depth conversion (Cameron
et al., 2007; lversen and Tygel, 2008).

The good properties of time migration motivates the search
of more accurate algorithms to overcome limitations and
enlarge the applicability of time migration. As shown in
the literature (Perroud et al., 1999; Spinner and Mann,
2006; Coimbra et al., 2011, 2013), it is advantageous
to replace the conventional time-migration diffraction-stack
operators by appropriate common-reflection-point (CRP)
operators, the latter being constructed, typically with
common-reflection-surface (CRS) parameters. Moreover,
additional accuracy is also obtained by considering
minimum apertures, defined in terms of projected Fresnel
zones (PFZ)(Schleicher et al., 1997; Faccipieri et al.,
2015). Such apertures are also estimated using CRS
parameters.

In this paper, we follow the trend of performing Kirchhoff-
type, time migration under the use of CRP operators and
optimal apertures, both computed with the help of CRS
parameters. The approach is called CRP time migration.
Besides describing the proposed technique, we briefly
discuss and compare the proposed technique with the
conventional Kirchhoff approach of widespread practical
use. A field data example confirms the good potential of
the proposed technique for accurate time migration.

Formulation

The CRP time migration technique envisaged here is
formulated as a Kirchhoff-type algorithm, in which the
migration operator is a CRP traveltime, that is expressed
in terms of CRS parameters estimated from the prestack
data. Furthermore, the same CRS parameters also define
a minimal aperture in which the Kirchhoff summation is
optimally carried out.

The construction of the proposed CRP time migration
is based on the relationships between the traveltime
operators of stacking (here represented by the ZO
CRS diffraction traveltime) and time migration (here
represented by the double-square root (DSR) traveltime),
both operators referring to the same (unknown) target
reflector. For simplicity, we assume that the acquisition
surface is planar horizontal.

Notation

Both operators are defined on a same prestack data
volume, with traces specified as (m,h), in which m =
(m1,my)T and h = (hy,hy)T represent midpoint and half-
offset coordinates. As usual practice, we assume that
the application of the stacking operator produces a data
volume that well approximates a ZO volume, namely
the one that would be obtained if the subsurface were
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illuminated by a ZO acquisition. In the same way, the
application of the time-migration operator produces a
prestack Kirchhoff time-migrated image of that subsurface.

The central point of the stacking operator (i.e., the point
where the stacking output is assigned) is denoted by
(myg, 1), in which mg = (mq;,mg,)” represents trace location
and 1y the traveltime in the ZO (stacked) domain. More
specifically, 7y represents the two-way traveltime of the ZO
reflection ray (assumed non-converted primary) from the
surface point specified by my to the target reflector. That
ZO (normal) ray is called the central ray and supposed
to be uniquely determined by my. The point where the
Z0O central ray hits the target reflector is referred to as the
normal-incidence point (NIP).

In the same way, the central point of the time migration
operator (i.e., the point where the time migration output is
assigned) is denoted by (xq, %), in which xo = (xo1,%02)7
represents trace location and 1y is the two-way traveltime
in the time migrated domain. The point at the surface
specified by xq is determined from the central image ray,
which is the one that starts at NIP on the target reflector
and hits the surface with slowness vector perpendicular to
that surface.

Stacking and time migration operators:

With the notations described above, we are ready to
write the stacking and time-migration operators under
consideration. We recall that such operators are linked
to the same (unknown) target reflector. More specifically,
the central points (mg,7) and (xo, 7)) of the stacked and
time migration operators relates to the same NIP at the
target reflector by means of the central ZO and image rays,
respectively. We have

(a) Stacking operator: That is given by the ZO CRS
diffraction moveout, defined in the prestack domain
and central point, (my, ) at the ZO (stacked) volume,

tp(m,h) = \/(t0+aTAm)2+AmTCAm+hTCh , (1)

where we introduce the notation Am = m —my. In the
above equation, the coefficients (CRS parameters)
are given by

ot } { 2%t } o
a= ,C=1 i j=12. (2)
l:ami (m0.0) 8h,»ahj (mg,O)

(b) Time-migration operator: That is given by the double-
square-root (DSR) moveout, defined in the prestack
domain and of central point (xg,79) in the time-
migrated domain

ZM(mvh) = %\/
+ %\/T§+(m+h—xo)TS(m+h—x0),
3)

where the coefficient (migration parameter) is given by

734 (m—h—x¢)"S(m—h —x)

0%t

= K {&x,»&xj

} =12, (4)
(%0)

In the literature, the time-migration matrix, S, is referred to
as the sloth parameter. For later use, it is convenient to
write down the above traveltimes in the ZO configuration,
namely t2,(m) = tp(m,0) and 1%, (m) = 1,;(m,0). After a
little algebra, we find

(12, (m)]? 15+ 2toa” Am+Am” (aa” + C)Am, (5)

[om)? = G+ (m-x)"S(m-x). (6)

Relationships between coefficients of stacking and time
migration operators

We now investigate the link between the coefficients of the
stacking and time migration operators related to the same
target reflector. For that, we consider stacking and time-
migration ZO operators of Equations (5) and (6).

We suppose that the the central point (mg,7) of the
stacking operator is a reflection point in the ZO (stacked)
domain and, moreover, that point mapped to (xq,7y) after
time migration. Following Mann et al. (2000) (in the
2D situation) and Gelius and Tygel (2015) (in the 3D
case), we recall that the time-migrated point, (x¢, ), that
corresponds to the ZO point (my, 1), is the minimum (apex)
of the stacking operator, t2,(m). As such, that apex,
m = Xy, iS determined by the condition

I12o)?
= 270(x0)5%>
am m=Xy w0 am m=Xg

2[tpa+ (aa’ +C)(xg —mg)] =0. (7)

Solving for my and substituting into Equation (5), leads to
the expressions

xO:mOfto(aaTJrC)’la, (8)

% = 12p(x0) = t9/1 —a” (aa” +C)~a )
Moreover, we also find the relation
o(m)? = 1 +(m—x))" (aa” +C) (m—x)),  (10)
from which, comparison with the ZO time-migration
operator z%(m) of Equation (6) leads to the additional

relations

S=aal +C, (11)

1§ = [ (mo)* = 75 + (mg —x0)"S(mo —x0) .~ (12)
We finally observe that
C=4Vyi,, and S=4V,7, (13)

where Vyuo and Vy are the so-called NMO and time
migration velocity ellipses, evaluated at (my, ) and (xo, 79),
respectively. We note that, in the 2D situation, Vyuo
and V), represent the NMO and time migration velocities,
respectively.
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Expression of the CRP trajectory

We now focus on the construction of the CRP operator
that refers to a given time-migration sloth parameter, S and
time-migration central point, (xq, 7). For that, we start with
the time-migration operator of Equation (3) for a fixed half-
offset, h, which we recast in the more convenient form

[M(mvh;X07 TO) = tS(mvh;X07 TO) +[g(m7h;X07 TO) ) (1 4)

with 7, = t,(m, h; X0, 79) and ¢, = 1, (m, h;xp, 70) given by

© o1
) 2 1
2 = Doomrhox) Sm+h—x). (16)

Note the change in notation in the above expressions, for
which the dependence on the time-migration central point,
(x0,70), is made explicitly.
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Figure 1: 2D model with a single reflector and its zero-
offset (ZO) response in time. Left: Starting at point P on
the reflector, the image ray, highlighted in green, and its
corresponding normal ray, highlighted in red are shown.
The image and normal rays emerge at the measurement
surface at xo and mg, respectively. Also shown are the
wavefronts of the NIP wave from P as it arrives at m( and x
in different times. Note that the wavefront is tangent to the
measurement surface. In the time domain, the diffraction
curve from P is tangent to reflection curve at the ZO trace
at my. The CRS parameters on that point are {a,C}. The
same curve has its apex on the ZO trace at xo. The
corresponding parameter at that point is S.

Geometrical interpretation of fy;(m, h;xg, 7))

The time-migration traveltime of Equations (14)-(16) admit
the following appealing interpretation: Consider the
isochrone in depth domain specified by the central point
(my,1). That isochrone is taken only conceptually because
we do not have a depth-velocity model. For any point, P,
on that isochrone, specified by the lateral coordinate, x,
and for every fixed half-offset, h, Equation (14) represents
the (DSR) traveltime that refers to the point diffractor at P
under the common-offset configuration of half-offset, h.

For varying point diffractors along the isochrone, as
specified by correspondingly varying coordinate vectors,
X, an ensemble of diffraction surfaces is obtained. Also
under the same common-offset configuration specified by
h, such ensemble has, as an envelope, the reflection
response of the isochrone, taken as a reflector. In order
to determine the envelope of the ensemble of diffraction
surfaces parameterized by xy, we apply the envelope

condition 5
t
Ty, (mhiX0, %) =0 (17)
Using Equation (12) to replace rg and isolating x¢ in the
Equation (17), we obtain

413871 Am

h’h—Am’Am " (18)

X0 =mg +
Substitution of Equations (12) and (18) into Equations (15)
and (16), we find the expression

2T
i2h"h

tr(m,h;mo,70)]2 =hTSh+ 00 %
7 (m, b mo, fo)] * hTh— Am7Am

(19)

Geometrical interpretation of tg(m,h;my, 7)) :

Consider a fixed half-offset, h. Equation (19) represents
the reflection traveltime, under the common-offset
configuration of half-offset, h, of the ZO isochrone that
refers to the central point, (mg,f), that isochrone taken
as a depth reflector. Suppose now that the ZO reflection
traveltimes, of the target reflector, as a function of midpoint,
my, is given by the expression 1y = 1p(mg). For varying
points (mg,#y(mygp)) on that reflection curve, the traveltime
functions of Equation (19) constitute an ensemble of
reflection traveltimes of isochrones, parameterized by the
midpoints, my. The envelope of that ensemble is obtained
by the envelope condition

ot
g (1m0, 10) = 0. (20)

Under the consideration that

otg _ 1 az,%

Tmo_ﬂrmo’ (21)

we find
2a(h’h — Am” Am) + 1pAm = 0. (22)

The above quadratic equation in Am has the solution, Am =
Amcgp = mcgpp — Mg, where

2(ha)h

ST AR (29)
to+ /13 +4(h"a)2

mcrp = mcgp(h) =mg +

CRP curve and CRP surface:

In what follows, we assume that the quantities {my,7,a, C}
are given. That differs from the usual practice with the CRS
method, in which the central point, (my,#) is given and the
CRS parameters a and C are estimated from the data and
attached to that central point. Here, the four parameters
{my,79,a,C} are all freely given. At a later stage, these four
parameters will be estimated regarding their relationship to
a given central point (x¢, ) in the time-migrated domain.
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We recall that the CRP gather that pertains to a given
central point, (myg,#), assumed to be a reflection point in
the ZO (stacked) volume, consists of the source-receiver
pairs, (Scgrp(h),Gcgp(h)) which, for varying half-offsets,
h, share the same reflection point at the target reflector.
That point is the normal-incident-point (NIP) determined by
(mg, 7). The quantities {my,7,a,C}, determine the source
SCRP(h) = mCRp(h) —h and receiver GCRP(h) = mcRp(h) +h,
in which the midpoints m¢gp(h), is given by Equation (23).

The CRP traveltime curve, tcgp(h) (see Figure 2) that refers
to the quantities {my,#,a, C} is chosen to be the one that
results from the DSR traveltime applied to the CRP gather
that corresponds to such quantities. In symbols

tCRP(h) = tM(InCRP(h),h) . (24)

For varying m in the neighborhood of my and small varying
h, the CRP stacking surface, Trgp(m,h) (see Figure 2) that
refers to the central point, (mg,f), in the ZO (stacked)
domain is chosen to be,

Terp(m,h) = tcgp(h) + [acgp(h)]” [m —mcgp(h)],  (25)

with 5
acgp(h) = ;Tﬂs(mc,ep(h)m) . (26)

CRP curve
CMP curve

CRP stacking surface

Migration surface

4.0

2.0

0 05 _1& 10

15 50 0

Midpoint [Km] Half-offset [Km]

Figure 2: 2D synthetic example of a CRP curve that refers
to (mg,t9) for a dipping plane reflector. Note that the CRP
curve follows the migration surface (starting at (xo,7))
along the offsets and is also tangent to the reflection
traveltime (CRP stacking surface). In contrast, the CMP
curve was not able maintain that good fit for increasing
offsets.

CRP time migration algorithm

Our aim now is to apply the previous results to construct
a CRP time migration traveltime, 12, = t¥..(h), and CRP
time migration surface, T2, = T2 (m,h) that refer to a
given (central) image point, (xo,7), in the time-migrated
domain. For that, we need to estimate the quantities,
{m}! )" .a);,Cy}, that pertain to the given (xo,7) in the
time-migrated domain.

From Equations (8)-(9), we readily see that

—-1/2
mg” =Xq+ Ty [1 faLS;,IlaM] (S;,,laM) ,

(27)
M a1, 172
ty =1 {1 —ay,S;, aM} )

Reflection traveltime

where we used the notation
Sy =ayal, +Cy . (28)

From Equations (27), we readily see that our problem
reduces to find the parameter pair (ay;,Cy). Once these
quantities are obtained, the sought-for CRP curve and
surface are given by

1ep(h) = tpsr(MPpp(h) h) | 29)
Tp(m,h) =25 (h) + [afp ()] [m —mgZ, (h)]

where mY%,, and a%,, are the same functions as their
counterparts megp and acgp, computed, however, with the
quantities {m}{,#}! ay;,Cy}.

Time migration parameter estimation

We are now ready to address the problem of estimating
the parameters ay; and Cyy, from which the central point,
(m)! 1)), as well as the CRP curve, 1% ,(h), and CRP
surface, 7 ,(m,h), are obtained. That is simply done as
follows: For a user-selected ensemble of trial parameters
{a,C}, construct for each of them the CRP surface,
Tcrp(m,h) and compute the stacking energy (semblance)
along that surface. The parameter pair for which the
maximum energy is attained is the one to be selected.

The estimations indicated above require proper apertures
in midpoint and half-offset directions. The aperture in
midpoint direction is attached to the estimation of the
midpoint inclination, a,,, of the CRP surface for varying
offsets. Since a is the first derivative in midpoint, only a
small aperture is needed. In our 2D experiments, we found
that aperture sizes of five traces for each offset are enough.
Based on these results, in the 3D case, we recommend the
same aperture size in inline and crossline directions (i.e.,
totaling 25 traces in regular grid for each offset). In the
half-offset direction, the aperture should be the same as
in any prestack time migration. Thus, in the 3D case, the
number of traces considered on each estimation of ay; and
Cy, is the number of midpoint traces times the number of
offsets.

Computation of CRP time migration

As earlier indicated, we propose a Kirchhoff-type time
migration such that, for each output image point, stacks
the prestack data along the CRP surface that corresponds
to that point. In analogy of the well-established Kirchhoff
depth migration (see, e.g., Schleicher et al., 1993), the
CRP time migration is computed by an expression of the
form

L
Dlfep (30, 7) = —5 /J/ Wekp (3D, _y dmdh.  (30)

Here, DX, (x0. ) is the time migration output at the image
point, (xo,7y), D = D(m,h,?) is the prestack data. As well
known (see, e.g., Schleicher et al., 1993), the partial
derivative of the data, d,D(m,h,t) with respect to time is
applied to preserve the original time shape of the seismic
signal. Moreover, 12, = 4. .(m,h) represents the CRP
surface that refers to the (output) image point.

The quantity WX, represents the weight function that
aims in the recovering of amplitudes. Based on Zhang
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et al. (2000), we use the true-amplitude weight for a
locally homogeneous medium of matrix migration velocity
determined by the matrix S (see Equation (13)),

T detS| /1 1 t t,
W= WLISI(L Ly (5 6) gy

4802 \1s t6) \1g 15

to measure the amplitudes stacked along of the diffraction
manifold in Equation (30). The values g and ¢; are defined
by Equations (15) and (16), respectively.

The migration aperture, denoted .« represents the region
over which the migration integral is performed. Based on
the concept of Projected Fresnel Zone (PFZ) (Schleicher
et al., 1997), the aperture </ is proposed to consist of
points (m,h) which simultaneously satisfy the conditions

[m —mcgp(h)[| <&, and || <8, (32)

where, 6, and §, are midpoint and half-offset aperture
bounds. Here, the aperture bound in half-offset direction,
&y, is taken as the one used in any prestack time migration.
Following the same lines as in Faccipieri et al. (2015), the
aperture bound in midpoint direction, §,, can be given by

am:a,/%, (33)

where, |A¢| =max{|A¢1|,|Ac2|}, in which A¢; and A¢; are the
eigenvalues of the 2 x 2 symmetric matrix C, w is the length
of the seismic pulse. Moreover, t{)” is the ZO traveltime that
is given by Equation (27), in terms of the CRS parameters,
{aym,Cpy}, that pertain to the (output) image point (xq, 7).
Finally, & > 1 is a user-selected adjustment parameter.

Examples

The proposed CRP time migration was applied to a 2D
real dataset acquired offshore in Brazil at Jequitinhonha
basin. The dataset has 4 ms time sampling, 12.5 m
between Common Midpoint (CMP) gathers, 25 m between
hydrophones with minimum and maximum offsets of 150 m
and 3125 m, respectively. For comparison purposes,
Figure 3 (top) shows a CRS stacked section obtained
with global estimation of parameters with the following
apertures: (i) Midpoint: 30 m from zero to 1.3 s, increasing
linearly until 150 m at 3.5 s and constant until the maximum
time sample. (ii) Offset: 650 m from 0 to 1.3 s, increasing
linearly until 1050 m at 3.5 s and constant until the final
time, 6.0 s. A conventional post-stack Kirchhoff time-
migrated section constructed with that dataset is shown
at Figure 3 (bottom). The migration aperture that has
been used was ten times greater than the proposed
minimum aperture, i.e., a@ = 10 in Equation (33). We
observe that, under that conventional procedure, smaller
apertures were not able to image some of the dips present
in the data. To carry out the CRP time migration, the
CRS parameters a and C needed to be estimated using
1, from Equation (29). In the present example, the
estimations were performed using constant midpoint and
half-offset apertures of 50 m and 1000 m, respectively.
Once these parameters were estimated, for each (xq, 1),
the dataset was time migrated, considering a 2.5D case
formulation. The obtained time-migration section is shown
in Figure 4 (top). The migration apertures were calculated
using Equation (33) for each (mff,#}) with o =1 and

Time [s]

-15 -10
Distance [km]

Figure 3: Stacked section obtained with CRS method
(top) and its post-stack Kirchhoff migration with aperture
ten times (a = 10) than the proposed minimum aperture
in midpoints (bottom). Remark: the velocity model used
to migrate the dataset was obtained by the CRP time
migration.

w =40 ms which leads to different values of apertures
depending of Cy and #}!. Figure 4 (bottom) shows
the semblance values for the estimated parameters. |t
is possible to identify and quantify the regions where
the CRP surface adjusted the events properly. The
semblance panel can be seen as a valuable tool for the
purposes of evaluation and quality control of the CRP time
migration. Figure (5) shows the estimated parameter a
and S, converted on angles and velocities for illustrative
purposes, for each (xq, 1)

Conclusions

A Kirchhoff-type, time migration algorithm is proposed
that is optimal in two respects. First, the summation is
performed along the common-reflection-point (CRP) curve
(as opposed to the conventional diffraction-time hyperbola).
Second, a small aperture, associated to the projected
Fresnel zone (PFZ), is employed that is able to restrict
the summation to that part of the CRP curve where
constructive interference occurs. A key feature of the
algorithm is a transformation function that maps each given
image point into a corresponding point in the zero-offset
(ZO) (stacked) volume and also computes the ZO common-
reflection-surface (CRS) parameters there. Such quantities
are used to construct the CRP curve and the summation
aperture at each image point. First field-data examples
confirm the good potential of the new technique for high-
quality, time migration results.
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Time [s]

0
Distance [km]

Time [s]

-15 -10
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Figure 4: Top: Prestack time-migrated obtained with the
proposed CRP algorithm using the minimum apertures in
midpoints. Bottom: Semblance values obtained on the
estimation of parameters for each (x, 7).

Time [s]

Time [s]

e~

-10
Distance [km]

Figure 5: Parameter a converted in degrees (top) and
parameter S converted in velocities (bottom) obtained for
each (xp, 7).
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