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Abstract

Stacking velocity estimation in seismic processing
may be benefit by the use of the complex analytic
signal obtained by the Hilbert transform combined
with eigenstructure-based methods. In this paper
we investigate how the Multiple Signal Classifier is
affected by the Hilbert transform. We propose for
the complex seismic data a model that approximates
the arrival delays as a steering vector for velocities
close or equal to the stacking velocity. This
approximation helps to interpret the higher-resolution
of the eigenstructure-based methods combined with
the Hilbert transform. We observed that the
eigendecomposition of the complex traces presents a
larger concentration of energy in the first eigenimage
when compared to the decomposition without the
Hilbert transform.

Introduction

Seismic data acquisition is performed in shot-receiver
coordinate (Yilmaz, 2001). The recorded data form a
common-shot gather with the same shot recorded at
different receivers. At each receiver, the recorded data
are known as seismic trace. For processing seismic data
we can sort the recorded traces in different ways, being
one of the most popular the common-midpoint (CMP)
method (Mayne, 1962). A CMP gather is formed by putting
the traces with the same midpoint between the shot and
receiver locations together, with the characteristic that all
the traces will be reflections from the same point in depth.
In reflection seismic processing, stacking is the operation
which uses the diversity property of CMP gathers and
generates for each CMP a single zero-offset (ZO) trace.
Each sample of the zero-offset trace at time 1, is generated
by summing the amplitudes of the traces in the CMP gather
along the normal-moveout (NMO) equation (Dix, 1955),
which models the arrival time of reflections in the traces
and which depends on the stacking velocity. The process
of estimating the stacking velocities in the framework of the
CMP method is called velocity analysis (Taner and Koehler,
1969). In this procedure, for each #, and each candidate
stacking velocity v; a coherence function is computed. The
trial velocity which corresponds to the highest coherence
value is chosen as the stacking velocity for that #;.

The standard coherence function used for velocity
analysis is a second-order energy measure called

semblance (Neidell and Taner, 1971). In (Biondi and
Kostov, 1989) and (Kirlin, 1992), it was shown that
coherence measures based on eigenstructure methods,
such as the MUltiple Slgnal Classifier (MUSIC) introduced
by (Schmidt, 1986), can lead to velocity spectra with
higher resolution than semblance. Recently, a seismic
MUSIC based on the temporal correlation matrix has been
proposed (Barros et al., 2015). On the other hand, the
advantages of processing complex analytic seismic traces,
obtained by the Hilbert transform, has been discussed
since (Taner et al., 1978). In (Sguazzero and Vesnaver,
1986) different coherence measures (some of them using
the complex seismic analytical signal) were discussed
and it was mentioned in (Biondi and Kostov, 1989) that
eigenstructure methods could be benefit by using the
complex seismic analytical signal.

Although the use of the Hilbert transform improves
the resolution of the velocity stacking estimation, this
observation is not explained in the literature. In this
paper we discuss and try to explain the impact of
the Hilbert transform on the resolution of eigenstructure
methods such as MUSIC, as illustrated in (Biondi and
Kostov, 1989). In order to do that, we model the
arrival delays for the complex seismic data as a steering
vector, near the region of the correct stacking velocity.
We then analyze the eigendecomposition of the complex
seismic traces and present some numerical experiments
to support our analysis. Our main observation is that
the eigendecomposition of the complex traces presents
a larger concentration of energy in the first eigenimage
when compared to the decomposition without the Hilbert
transform.

Eigenstructure-based coherence

In this section, we first show how the seismic windowed
data, which is used by all coherence measures, is formed.
Then, we present the spatial and temporal correlation
matrices of the windowed data, and show how these
matrices yield the MUSIC coherence measures. For further
detail, we encourage the reader to see (Barros et al., 2015).

Windowed data

Coherence is computed on a window of data centered
at some time 7(i), where k corresponds to a given
value of the velocity being tested and i denotes a trace.
Consider the windowed data with N; samples formed by L =
(N; —1)/2 samples above and below the NMO traveltime,
defined by the zero-offset traveltime 7, and a trial velocity
Vi as )
rk(i)2:z§+%, (1)
Vi
where h; is the half-offset between the source and receiver
that generated the trace. When a window is formed with
the correct value of v, in a fy that contains a seismic event,
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the seismic signal in all the traces will contain a reflection,
and thus the samples in the traces will be highly correlated.
In that case a coherence function computed from the
windowed data will present a large value, indicating that
the velocity v, yields a good fit.

Remember that »; is the number of samples in the window
and let N, be the number of traces in the CMP gather.
For each 1)y, we can model the seismic windowed data
as (Barros et al., 2015)

D=1s" +N, 2

where the dimension of D is N, x N;, s is the seismic
wavelet with dimension N; x 1, 1 is a vector of all-ones with
dimension N, x 1 and N is an N, x N; error matrix. In the
sequel, we briefly review how this model yields the MUSIC
coherence measure.

Multiple signal classification

The windowed spatial correlation matrix can be written as

R— DD ~ MIIT +071, (3)
N N "

where ||s||? is the energy of the wavelet, o> is the
noise variance and I is the identity matrix of appropriate
dimension. The matrix R is called spatial correlation matrix
because it measures the correlation between different
traces, i.e., different spatial coordinates. Its dimension
is N, x N.. If there is an event in the window, 1 is
approximately an eigenvector of R associated with its
largest eigenvalue. In this paper, we will refer to this as the
largest eigenvector of R. In the literature, MUSIC methods
are based on the sample spatial correlation matrix R, so
they will be called spatial, or S-MUSIC (Wang et al., 2001).
Essentially, they can be seen as an attempt to answer the
question: “Is the all-ones vector 1 proportional to the largest
eigenvector or R?” If this answer is positive, then we may
assume that R was formed from a window that contains a
reflection. The S-MUSIC coherence measure is given by

N,

Ps=——F
Ny — ‘1TVl|2

(4)

where v, is the largest eigenvector of R, with dimension
N, x 1. If the window is well-matched to a single event,
then Ps will be infinity.

As with the spatial correlation, the temporal correlation
matrix can be computed from the data as

1
r=—D'D~ss’ +06%L (5)
Ny

In this equation, o2 is the noise variance for the temporal
correlation matrix, which is not necessarily equal to 0,3 from
the spatial correlation matrix. The dimension of the matrix
r is N; x N;. The matrix r contains the correlation between
different time samples of the windowed data, and is thus
called a temporal correlation matrix. The corresponding
coherence measure is called T-MUSIC.

It can be shown that if there is an event in the window,
the largest eigenvalue of r is A; ~ ||s||*> + o2, associated
with the eigenvector u; ~s. Therefore, instead of testing
whether the all-ones vector, 1, is the largest eigenvector of

R, as is done in S-MUSIC, we may test whether s is the
largest eigenvector of r. To compute a coherence measure
from r without knowledge of s, we use the fact that the
eigenstructures of R and r are related. It can also be
shown that if 1 is the largest eigenvector of R, we expect
that D71 is the largest eigenvector of r. The term D”1 has
an interesting interpretation. Indeed, let

PO e

§= N,-D 1. (6)
Now, recall that, if 7y and v, are correct, then all the traces
in the window contain repetitions of the seismic wavelet s.
Also note that § is the mean value of the traces in a window,
and can thus be seen as an estimate of the wavelet s. In
consequence, we see that T-MUSIC tries to answer the
question “Is the largest eigenvector of r proportional to
the estimated wavelet?” The resulting T-MUSIC coherence
measure is given by

P -
B = 8T P

where u; is the largest eigenvector of r, with dimension
N; x 1. If § is the largest eigenvector of r, then Pr will be
infinity.

Complex analytical trace

As defined in (Taner et al., 1978) complex seismic trace
analysis treats seismic traces as the real part of analytical
complex traces. The analytical seismic trace can be
computed as:

x(t) =d(t) +j1{d(1)}, (8)

where #{d(t)} is the Hilbert transform of the seismic
signal d(z).

Let D(f) be the continuous-time Fourier transform of d(z),
then the analytical signal can be defined in frequency
domain as

[, i £20
X(f)—{ 0, if f<o ©)

Thus, the analytical signal is a complex-valued signal with
only positives frequencies, but its frequencies amplitudes
have twice the value of the ones from the real-valued
seismic signal.

The windowed analytical seismic data can then be written
as
X" =p7 + jHD”, (10)

where superscript 7 denotes transpose operation. The
matrix H is an N; x N; convolution matrix that contains the
coefficients of the Hilbert transform:

h;
H=|: |. (11)
hy,
Each row of H is a 1 x N; vector with the coefficients that

generate the corresponding row of the Hilbert transform for
each column of DT. We can also write X" as

X" =fAD”, (12)

where H = I+ jH. This matrix notation will be useful to the
development of the next sections.
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Steering vector approximation for the analytical signal

In this section we propose a steering vector approximation
to the complex seismic windowed data. This approximation
helps to interpret the eigenstructure of seismic analytical
signal when the velocity used to form the window is close
or equal to the velocity of the seismic event. In these cases
the reflections events will not be aligned in the window. The
events will arrive with a small delay along the traces, which
might be modeled as a steering vector.

First, let d; (r) be the continuous-time signal whose samples
form the data for the first trace in the window. In other
words, the first row of D consists of the vector

dy = [di(dr) --- dy(Nedr)], (13)

with dimension 1 x N;, being dr the sample period. Now,
assume that the signal at each trace is a delayed version
of the signal at the first receiver. In other words, the
continuous-time signal for the i-th trace is d;(t) = d(t — 6;),
where 6; is the delay. Now, if we assume that the delay 6;
is sufficiently small when compared to the bandwidth of the
signals, we may use the narrowband approximation and
write: '

xit) =x1(t — 6) ~ xy (1)el?, (14)

where x;(¢) is the Hilbert transform of d;(r).

With this approximation in mind, we may write the analytical
seismic windowed data as

X" =xTal 4N, (15)

where x; is a 1 x N; vector with the analytical signal at the
first receiver
X| :[xl(dt)-”xl(Ntdtﬂ (16)

and a is an N, x 1 steering vector with the delays for each
receiver ‘ .
al =[1e/% ... e/, (17)

MUSIC for the analytical signal

The MUSIC coherence functions can be computed from
the analytical signal, as indicated in (Biondi and Kostov,
1989). If we use the analytical signal from equation (15)
we would have spatial and temporal correlation matrices
defined by equations (18) and (19):

1 1
Ry = EXXH ~ ﬁtHx] |[2aa” + 621 (18)
1
ry = — XX ~xlx; + 0’1 (19)
Ny

The superscript H denotes hermitian operation. It can
be shown that the largest eigenvectors from Ry and
ry are approximately a and x;, respectively. We can
compute MUSIC coherence functions using equations (4)
and (7), replacing the eigenvectors vy and uy by the largest
eigenvectors from Ry and ry, respectively.

The steering vector approximation is good for small delays
and is exact if the seismic signal is aligned in the window.
If that is the case, we have a =1 (the delays are all equal to
zero) and in ideal conditions, the signal at the first receiver
will be the seismic wavelet s. So, the largest eigenvector

from Ry will be close to 1 and the largest eigenvector
from ry will be close to the analytical version of the largest
eigenvector from r (x; ~ Hs”). We analyze in section the
cases where the window is a close but imperfect fit to the
data.

Numerical results
Synthetic data

In order to compare the MUSIC coherence function with
and without the analytical signal, we first used a simple
synthetic model with a single reflection. We generated this
data using equation (1), with a zero-offset traveltime of 1s
and a velocity of 2100m/s. The reflection was modeled
by a zero-phase Ricker wavelet (Hosken, 1988), with a
dominant frequency of 20Hz. The CMP section contains
101 traces. The offset of the first one is 80m and the
distance between them is 40m. The sample period is 2ms.
We also added Gaussian noise to the data, in order to get
the average signal-to-noise ratio (SNR) of approximately
15dB along the event.

In to = 1s, we computed both S- and T-MUSIC for several
trial velocities. The results are shown in Fig. 1, where can
be seen that in both cases the MUSIC computed with the
analytical signal present a better resolution. We explain
this by the fact that in windows formed with velocities that
are close to the actual velocity the eigenvectors from Ry
and ry are not close to 1 and s, as discussed in section .
Their projections onto 1 and s do not result in values close
to zero in the denominator of equations (4) and (7). So, the
values of Py and Pr will be smaller than the values obtained
without the analytical signal, as illustrated in Fig. 1.
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Figure 1: S-MUSIC (a) and T-MUSIC (b) plot for the
example. The vertical lines are placed in v =2105m/s to
illustrate the difference when using the analytical signal.

In Fig. 1, we draw a vertical line at v =2105m/s, which is
a velocity close to the stacking velocity where there is a
difference in the coherence computed with and without the
analytical signal. This difference might be explained by the
steering vector approximation. The largest eigenvectors of
Ry and rx represent events that are not exactly aligned,
arriving with small delays along the traces. So they are
more different of 1 and s than the largest eigenvectors from
R and r, which results in this gain of resolution.
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In Fig. 2 and Fig. 3 we show the frequency spectra from the
eight largest eigenvectors from r and rx at v =2105m/s.
(The frequency axis are in normalized frequencies going
from 0 to 2z.) For a better visualization of the eigenvectors
we did not added Gaussian noise to generate Fig. 2 and
Fig. 3. It is possible to see that the positives frequencies
from eigenvectors 1 and 2 of r are similar to the positive
frequencies of the eigenvector 1 from rx. This observation
also holds for other eigenvectors in the figures. This is
an indication that the energy in the eigendecomposition
of r corresponding to two distinct eigenvectors may be
concentrated in a single eigenvector of rx.

Eigenvector 1
4 4

2 ° /\ /\
0 0

0 1 2 0 1 2
Eigenvector 3

-

Eigenvector 2

Eigenvector 4

0 1 2
Eigenvector 5 Eigenvector 6
4 4
0 0
0 1 2 0 1 2
Eigenvector 7 Eigenvector 8
4 4
2 M n ﬂ M 2
0 0"
0 1 2 0 1 2

Figure 2: Frequency spectra from the eight largest
eigenvectors from r.

In Fig. 4 we show for the range of velocities between
1000m/s and 3000m/s the largest eigenvalue from r, 4,
compared with the largest eigenvalue from rx, A;5. We
also show in Fig. 4 the sum of the two largest eigenvalues
from r, A; + A,, compared with A;g. It is possible to see
that A; + A, are very close to 4,4, which is also a indication
that the energy in two eigenvectors of r is concentrated in
a single eigenvector of ry.

Field data

We tested the computation of MUSIC coherence function
with and without the analytical signal in a marine field
data set, acquired in the Jequitinhonha Basin and provided
by PETROBRAS. The data set contains 981 shots with a
distance of 25 m between consecutive shots. There are 120
receivers displaced with intervals of 25m for each shot. The
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Figure 3: Frequency spectra from the eight largest
eigenvectors from ry.

sample period is 4ms and the total recording time is 7s.

In Fig. 5 we show the CMP from the marine field data which
we used in the tests and the velocity spectrum computed
with semblance. We show the velocity spectra computed
with and without the analytical signal for S-MUSIC, in Fig. 6,
and T-MUSIC, in Fig. 7. In this field data it is not possible to
distinguish an improvement in the resolution, with the use
of the analytical signal. However, in Fig. 7 we indicate with
red arrows a small region where the use of the analytical
signal presents an interesting difference: the velocity of the
event indicated is smaller when the T-MUSIC is computed
with the analytical signal. Possibly, when we used the
analytical signal we corrected the small deviations in phase
and the event was properly fitted in the window. This event
might also be a repetition of the above event fitted in the
window, once they are close in time and its velocities are
approximately the same.

Conclusions

In this paper we discuss the use of the seismic
analytic signal for eigenstructure-based stacking velocity
estimation. We observe that the analytical signal increases
the resolution of MUSIC coherence function and propose
a steering vector approximation to be used in the velocity
search when we have velocities close or equal to the
stacking velocity. This approximation explains the higher-
resolution of MUSIC for the analytical signal and showed
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Figure 4: Comparison of eigenvalues from r and ry: (a)
The black line is the largest eigenvalue from r, 4;, and the
blue line is the largest eigenvalue from ry, A4; (b) The
black line is the sum of the two largest eigenvalues from r,
A1+ A2, and the blue line is the largest eigenvalue from ry,
AIH.
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Figure 5: CMP section (a) and its semblance coherence
panel (b) .

to be valid in synthetic numerical experiments. We
also observe, in synthetic numerical experiments, that
the eigendecomposition of the seismic analytical signal
seems to concentrate the energy in the largest half of the
eigenvalues when compared to the eigendecomposition of
the real-valued seismic signal. We compare for a marine
field data the velocity spectra computed with and without
the analytical signal. For the marine field data, we do
not observe an improvement in the resolution with the use
of the analytical signal, but we observe an indication that
the analytical signal might be useful to estimate velocities
with more precision. For a better understanding of the
benefits of the analytical signal in the computation of
eigenstructure-based velocity spectra, more tests with real
seismic data must be made.
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Figure 6: S-MUSIC coherence panel computed with (a)
and without (b) the analytical signal.
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Figure 7: T-MUSIC coherence panel computed with (a) and
without (b) the analytical signal.
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