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Abstract

There are many applications in geophysics,
where a path must be selected inside a plane, vol-
ume, or multidimensional space, such that some
measure of the properties inside that space must
be minimized (or maximized) along the path, sub-
ject to some additional smoothness constraints.
We present a method, based on the solution of
the Eikonal equation, that naturally produces a
smooth path that minimizes a traveltime function
equivalent to the original problem. The robust-
ness of the method is illustrated by three exam-
ples from different applications.

Introduction

Picking is a common task in several geophysical
problems. It can be defined as the selection of a func-
tion representing a path across a multidimensional
volume, so that the integral of some property along
this path is maximized (or minimized). Depending
on the particular problem to be solved, the property
may represent semblance as a function of time (or
depth) and velocity; local correlation as a function
of time and static time displacement (or lag); or
amplitude as a function of time and offset. Although
the method presented here can be applied to all of
these problems (as we shall see in the examples), for
didactic reasons we will use one particular problem
to describe it. The problem we will consider is to
define a smooth function that best represents the
time variant displacements between two traces, in
order to maximize a measure of their similarity.

Most algorithms designed with this purpose (es-

timating time shifts between traces as a function of
time and space) are based on nonlinear approaches
(Kruse, 1988; Martinson and Hopper, 1992; Liner
and Clapp, 2004). Our approach is based on a linear
solution that uses windowed local crosscorrelation
(or running crosscorrelation) as a measure of local
similarity. The goal is to obtain a function of time and
space of the displacements (or lags) that maximize
the sum of the corresponding correlations.

In most cases the cross-correlation volumes are
affected by noise and cycle skipping, leading to
strong events unrelated to the correct displacement.
As a result, smoothing filters have to be applied when
the displacement function is constructed by selecting
the maximum crosscorrelation for each time, and
position. One example of an algorithm based on
this process is the Residual NMO Correction, when
crosscorrelations are computed between neighbor
traces in a common image gather (or between each
trace and a reference trace). Another example is
the computation of traveltime residuals between
recorded and synthesized traces in some formula-
tions of Full Waveform Inversion.

An alternative, which produces a more stable
and naturally smooth displacement function, is
based on the eikonal equation (Cohen and Kimmel,
1997, Deschamps and Cohen, 2001). The strategy
adopted here is very similar to the one described
by Tao et al. (2012), where they use Eikonal based
picking to perform velocity analysis for wide-azimuth
data. Let C(t, l) represent the running crosscorrela-
tion between two traces, where t is the time along
the traces and l is the displacement (or lag) of the
correlation. For each pair of traces, we need to esti-
mate a function l(t) that maximizes the path integral
C(t, l(t)). The first step is to transform C(t, l(t))
in a velocity model v(t, l(t)), with positive definite
velocities which are proportional to the correlation
values. Both t e l(t) are treated as spatial entities.

By solving the Eikonal equation for a horizontal
linear source on the top of this model (at t = 0), we
obtain the traveltimes τ(t, l). The isochrones are
interpreted as downward propagating wavefronts,
and the position of the wavefront that first touches
the bottom of the model (t = tMax) corresponds to

Fourteenth International Congress of The Brazilian Geophysical Society



ROBUST PICKING WITH THE EIKONAL EQUATION 2

the part of the wave that majorly traveled through
the highest velocities, that is, through the highest
correlation values. Starting at this position (l where
τ(tMax, l) is minimum), a ray normal to all isochrones
(wavefronts) τ(t, l) is traced back. This trajectory
corresponds to the desired function l(t).

Theory

One wishes to find a function that represents the set
of time shifts to be applied to a trace in order to max-
imize its correlation with a reference trace. Let’s de-
fine the functional

E(s) =

∫

s

C(t, l) ds, (1)

where C(t, l) corresponds to the running correlation
between two traces, t is the time along the traces, and
l the displacement (or lag) of the crosscorrelation that
can be a sub-multiple of the sampling interval. The in-
tegral in (1) is computed along the path s, defined by
the function l(t), from the starting time t = 0 to the
ending time t = tMax. The problem can be formu-
lated as the search for the path s that maximizes the
functional E(s), or in an equivalent manner, as the
search for the path that minimizes the functional τ(s)
defined by:

τ(s) =

∫

s

1

C(t, l)
ds. (2)

By a change of scale, we can replace: t → z, l → x,
and C(t, l) → v(z, x). Equation (2) can be rewritten
as:

τ(s) =

∫

s

1

v(z, x)
ds. (3)

As a result, the problem becomes equivalent to find
among the different paths the one that minimizes the
traveltime along the ray, starting at the surface (time
zero) and subjected to Fermat’s principle.

An important part of the method is the transfor-
mation of C(t, l) in v(z, x), which we call the mapping
function. There are many possibilities and, for
each particular problem to be solved, a different
function, or parametrization may be required. Some
of the options comprise the range of velocities to
be mapped, how to treat the negative values of
correlation, raising the correlation to a power in order
to control the contrasts in the model.

After the mapping, the solution can be decom-
posed in two steps:

• In the first step the Eikonal equation is solved for
the traveltimes τ(z, x) associated to a linear hor-
izontal source at z = 0. The choice of the linear
source in z = 0 (actually t = 0) corresponds to

the assumption that the displacements (lags) do
not change at t = 0, that is

∣

∣

∣

∣

d l(t)

d t

∣

∣

∣

∣

t=0

= 0. (4)

Another choice could be a point source at x = 0
(or l = 0), meaning that the displacement is zero
at t = 0.

• In the second step we find the position xs where

∂τ(zMax, x)

∂x
= 0. (5)

This position corresponds to the end of the path
(ray) associated to the desired solution. Starting
at this position, the ray x(z) (that is, the func-
tion l(t)) is traced upward using the traveltimes
τ(z, x) calculated at the first step.

Figure 1 summarizes the application of both steps.

Examples

This strategy for selecting the optimal function l(t)
was successfully tested in three distinct applications.
The first application comprises the estimation of
traveltime residuals for a Full Waveform Inversion
algorithm (FWI) with the one-way wave-equation
(Guerra and Cunha, 2013). This approach is similar
to the one described by Ma and Hale (2013), except
that they used dynamic image warping to estimate
the traveltime residuals. Given two common shot
records (field and synthetic) the goal is to build a
record with the same dimensions, such that each
sample represents an estimate of the instantaneous
(local) time shift between the corresponding traces
of the two shots. With this purpose, running cross-
correlation panels C(t, l) are generated for each
pair of traces. Paths that maximize the integrated
correlation are then computed with the Eikonal based
method. Figure 2 shows, superimposed to one of
those panels, the paths obtained by two different
methods. Part (a) presents the solution based on
the selection of the maximum correlation value for
each time, followed by smoothing in time and space.
We refer to this as the traditional method. Part (b)
presents the solution proposed here, which we refer
to as the Eikonal method.

The Eikonal based method is less susceptible
to cycle skipping, leading to results that are not only
more consistent when compared to the results from
the traditional method, but also present a naturally
smoother behavior, both in time and space. The
robustness of the Eikonal method becomes clear by
analyzing Figures 3 and 4, where final results for
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Figure 1: Background in grey scale corresponds
to values of correlation as a function of time and
time displacement (lag) between two traces (posi-
tive values in dark shades and negative values in
light shades). When transforming correlation values
in velocity, dark shades are mapped to high veloc-
ities while light shades are mapped to low veloci-
ties. The blue lines correspond to isochrones (wave-
fronts) associated to a linear source at the top of the
model. Wavefront acceleration at high velocity re-
gions becomes apparent. The portion of the travel-
ing wavefront that on average travels through regions
with highest velocities (higher correlations) will be the
first part of the wavefront to ”touch” the bottom of the
model. From this position a ray is traced upward (yel-
low line), which corresponds to the desired function
l(t).

Figure 2: The two figures show panels with corre-
lation values between two traces corresponding to
the same offset of the two shot gathers (recorded
and synthesized). It is clear that the traditional so-
lution produces unsatisfactory results, while the solu-
tion based on the Eikonal leads to stable and consis-
tent results.

Figure 3: Color scale represents the values for time-
shifts (displacement) between traces with same offset
from the two data (recorded and synthesized), esti-
mated by the traditional method.
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Figure 4: Color scale represents the values for time-
shifts (displacements) between traces with same off-
set from the two data (recorded and synthesized),
estimated by the Eikonal method. Not only the out-
come is more stable, but also more compatible with
expected displacements.

all offsets (Displacement(t,offset)) are compared for
both methods.

The second application refers to the estimation
of the time-shifts required for residual moveout
correction (RMO). The results are illustrated by
Figure 5. Although the differences between the
data corrected by the two methods are more subtle
when compared with the non-corrected data, the
Eikonal method has the advantage of requiring less
smoothing than the traditional method. The number
of traces (CIGs) used for the smoothing operator was
independently chosen to produce the best result for
each method. The traditional method required an
operator two and a half times longer for this specific
case. Figure 6 compares the time-shifts without
smoothing estimated by the two methods.

The third application is the automatic picking of
specific events in common shot records, as part of
a wave-equation based internal multiple attenuation
process. To use the Eikonal method in this particular
case, it is necessary first to apply a NMO correction
to the original gather, in order to better align the
desired event. Next, the gather is transposed,
with the time axis becoming x and the offset axis
becoming z. Then the amplitudes are converted to
velocity values, defining the model where the Eikonal
is solved and ray-tracing is performed. One example
of this application is presented in Figure 7.

Conclusions

Any picking process aiming at the construction of a
continuous and smooth path that maximizes (or min-
imizes) the integration of a multidimensional func-
tion along the path, is well suited for the use of the
Eikonal based method. In this method, picking is re-

Figure 5: The three sections correspond to a window
of migrated and stacked data. (a) without RMO cor-
rection. (b) With RMO using the traditional method for
estimating the time-shifts, with 50 traces smoothing.
(c) With RMO using the Eikonal method for estimat-
ing the time-shifts, with 20 traces smoothing.
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Figure 6: In (a) a general view of Figure 5-c. The
other two panels show the RMO estimated time-shifts
without smoothing, for offset 5.6 Km, using: (b) the
traditional method, and (c) the Eikonal method. As
expected, the Eikonal method produces a naturally
smoother solution for the RMO time-shifts as com-
pared to the tradicional method. The relevant low
frequency features of the estimated shifts in b and
c are well correlated with the water bottom canyons
observed in a.

Figure 7: (a) NMO corrected common shot gather.
Similar to the correlation panels, this gather is trans-
formed to a velocity model (dark shades for higher
velocities, and light shades for lower velocities). (b)
The yellow line shows the result of automatic picking
based on the Eikonal method, after inverse NMO cor-
rection, superimposed to the original shot gather.

defined as the solution of a well-posed physical prob-
lem, with specific initial conditions, a model space,
and an equation to be solved. The key to adapt the
method for different kinds of applications lies in the
translation from the particular problem to the equiv-
alent velocity model, the so called mapping function,
and how the initial condition is specified. Examples
from three different applications illustrate the robust-
ness of the method. Although not presented here, the
method was successfully applied to residual moveout
picking in a tomographic inversion application.
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